A New Approach to the Dynamic Signature Verification Aimed at Minimizing the Number of Global Features

Identity verification using the dynamic signature is an important biometric issue. Its big advantage is that it is commonly socially acceptable. Verification based on so-called global features is one of the most effective methods used for this purpose. In this paper we propose an approach which minimises a number of the features used during verification process due to check how the number of features affects the classification result. The paper contains the simulation results for the public MCYT-100 database of the dynamic signatures.

[1]  Loris Nanni,et al.  Ensemble of Parzen window classifiers for on-line signature verification , 2005, Neurocomputing.

[2]  Krystian Lapa,et al.  A New Approach to Designing Interpretable Models of Dynamic Systems , 2013, ICAISC.

[3]  Piotr Dziwiñski,et al.  A New Algorithm for Identification of Significant Operating Points Using Swarm Intelligence , 2014, ICAISC.

[4]  Olufemi A. Omitaomu,et al.  Weighted dynamic time warping for time series classification , 2011, Pattern Recognit..

[5]  Janusz T. Starczewski,et al.  Connectionist Structures of Type 2 Fuzzy Inference Systems , 2001, PPAM.

[6]  Marcin Korytkowski,et al.  Application of Neural Networks in Assessing Changes around Implant after Total Hip Arthroplasty , 2012, ICAISC.

[7]  Francisco Herrera,et al.  Interpretability of linguistic fuzzy rule-based systems: An overview of interpretability measures , 2011, Inf. Sci..

[8]  Krystian Lapa,et al.  A New Method for Designing and Complexity Reduction of Neuro-fuzzy Systems for Nonlinear Modelling , 2013, ICAISC.

[9]  Loris Nanni,et al.  An On-Line Signature Verification System Based on Fusion of Local and Global Information , 2005, AVBPA.

[10]  L. Rutkowski On nonparametric identification with prediction of time-varying systems , 1984 .

[11]  Hong Chang,et al.  SVC2004: First International Signature Verification Competition , 2004, ICBA.

[12]  Yoo-Sung Kim,et al.  A hybrid online signature verification system supporting multi-confidential levels defined by data mining techniques , 2010, Int. J. Intell. Syst. Technol. Appl..

[13]  Rafal Grycuk,et al.  From Single Image to List of Objects Based on Edge and Blob Detection , 2014, ICAISC.

[14]  Berrin A. Yanikoglu,et al.  Identity authentication using improved online signature verification method , 2005, Pattern Recognit. Lett..

[15]  Marcin Korytkowski,et al.  From Ensemble of Fuzzy Classifiers to Single Fuzzy Rule Base Classifier , 2006, ICAISC.

[16]  Ryszard Tadeusiewicz,et al.  Neural networks as a tool for modeling of biological systems , 2015, Bio Algorithms Med Syst..

[17]  Takashi Ogata,et al.  Experimental Development Of A Focalization Mechanism In An Integrated Narrative Generation System , 2015, J. Artif. Intell. Soft Comput. Res..

[18]  Marcos Faúndez-Zanuy,et al.  On-line signature recognition based on VQ-DTW , 2007, Pattern Recognit..

[19]  Ryszard Tadeusiewicz,et al.  Neural Networks In Mining Sciences – General Overview And Some Representative Examples , 2015 .

[20]  L. Rutkowski On-line identification of time-varying systems by nonparametric techniques , 1982 .

[21]  K. Cpałka On evolutionary designing and learning of flexible neuro-fuzzy structures for nonlinear classification , 2009 .

[22]  Loris Nanni,et al.  Combining local, regional and global matchers for a template protected on-line signature verification system , 2010, Expert Syst. Appl..

[23]  Piotr Duda,et al.  Decision Trees for Mining Data Streams Based on the Gaussian Approximation , 2014, IEEE Transactions on Knowledge and Data Engineering.

[24]  Wenbing Zhao,et al.  Realtime Motion Assessment For Rehabilitation Exercises: Integration Of Kinematic Modeling With Fuzzy Inference , 2014, J. Artif. Intell. Soft Comput. Res..

[25]  Lukasz Laskowski,et al.  SBA-15 mesoporous silica activated by metal ions – Verification of molecular structure on the basis of Raman spectroscopy supported by numerical simulations , 2015 .

[26]  Julian Fiérrez,et al.  HMM-based on-line signature verification: Feature extraction and signature modeling , 2007, Pattern Recognit. Lett..

[27]  Loris Nanni,et al.  An advanced multi-matcher method for on-line signature verification featuring global features and tokenised random numbers , 2006, Neurocomputing.

[28]  Marcin Korytkowski,et al.  Neuro-fuzzy Rough Classifier Ensemble , 2009, ICANN.

[29]  Lukasz Bartczuk,et al.  Type-2 Fuzzy Decision Trees , 2006, ICAISC.

[30]  Tomohiro Yoshikawa,et al.  Effect Of Robot Utterances Using Onomatopoeia On Collaborative Learning , 2014, 2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE).

[31]  Ricardo Tanscheit,et al.  GPFIS-Control: A Genetic Fuzzy System For Control Tasks , 2014, J. Artif. Intell. Soft Comput. Res..

[32]  Lukasz Laskowski,et al.  Functionalization of SBA-15 mesoporous silica by Cu-phosphonate units: Probing of synthesis route , 2014 .

[33]  Leszek Rutkowski,et al.  Novel Online Speed Profile Generation for Industrial Machine Tool Based on Flexible Neuro-Fuzzy Approximation , 2012, IEEE Transactions on Industrial Electronics.

[34]  Leszek Rutkowski,et al.  Designing and learning of adjustable quasi-triangular norms with applications to neuro-fuzzy systems , 2005, IEEE Transactions on Fuzzy Systems.

[35]  Leszek Rutkowski,et al.  Adaptive probabilistic neural networks for pattern classification in time-varying environment , 2004, IEEE Transactions on Neural Networks.

[36]  Robert Cierniak,et al.  On image compression by competitive neural networks and optimal linear predictors , 2000, Signal Process. Image Commun..

[37]  Krzysztof Cpalka,et al.  A New Method for Design and Reduction of Neuro-Fuzzy Classification Systems , 2009, IEEE Transactions on Neural Networks.

[38]  Janusz T. Starczewski,et al.  Learning Methods for Type-2 FLS Based on FCM , 2010, ICAISC.

[39]  Tzu-Chien Hsiao,et al.  Applying LCS To Affective Image Classification In Spatial-Frequency Domain , 2014, 2014 IEEE Congress on Evolutionary Computation (CEC).

[40]  Yoichi Hayashi,et al.  New Fast Algorithm for the Dynamic Signature Verification Using Global Features Values , 2015, ICAISC.

[41]  Meng Joo Er,et al.  On the Weak Convergence of the Orthogonal Series-Type Kernel Regresion Neural Networks in a Non-stationary Environment , 2011, PPAM.

[42]  Piotr Duda,et al.  Decision Trees for Mining Data Streams Based on the McDiarmid's Bound , 2013, IEEE Transactions on Knowledge and Data Engineering.

[43]  Leszek Rutkowski,et al.  Neuro-fuzzy systems derived from quasi-triangular norms , 2004, 2004 IEEE International Conference on Fuzzy Systems (IEEE Cat. No.04CH37542).

[44]  Piotr Duda,et al.  The CART decision tree for mining data streams , 2014, Inf. Sci..

[45]  Krystian Lapa,et al.  New Algorithm for Evolutionary Selection of the Dynamic Signature Global Features , 2013, ICAISC.

[46]  Krystian Lapa,et al.  A new approach to design of control systems using genetic programming , 2015, Inf. Technol. Control..

[47]  Stan Matwin,et al.  Automated Approach To Classification Of Mine-Like Objects Using Multiple-Aspect Sonar Images , 2014, J. Artif. Intell. Soft Comput. Res..

[48]  Joseph Lin Chu,et al.  The Recognition Of Partially Occluded Objects with Support Vector Machines, Convolutional Neural Networks and Deep Belief Networks , 2014, J. Artif. Intell. Soft Comput. Res..

[49]  L. Rutkowski,et al.  Nonparametric recovery of multivariate functions with applications to system identification , 1985, Proceedings of the IEEE.

[50]  Krystian Lapa,et al.  New Method for Design of Fuzzy Systems for Nonlinear Modelling Using Different Criteria of Interpretability , 2014, ICAISC.

[51]  Marcin Zalasinski,et al.  New Approach for the On-Line Signature Verification Based on Method of Horizontal Partitioning , 2013, ICAISC.

[52]  Marcin Gabryel,et al.  Object Detection by Simple Fuzzy Classifiers Generated by Boosting , 2013, ICAISC.

[53]  Leszek Rutkowski,et al.  Identification of MISO nonlinear regressions in the presence of a wide class of disturbances , 1991, IEEE Trans. Inf. Theory.

[54]  Robert Nowicki,et al.  On design of flexible neuro-fuzzy systems for nonlinear modelling , 2013, Int. J. Gen. Syst..

[55]  Leszek Rutkowski,et al.  Flexible Takagi Sugeno Neuro Fuzzy Structures for Nonlinear Approximation , 2005 .

[56]  Lukasz Laskowski,et al.  Molecular Approach to Hopfield Neural Network , 2015, ICAISC.

[57]  Juan J. Igarza,et al.  MCYT baseline corpus: a bimodal biometric database , 2003 .

[58]  Rafał Scherer,et al.  Relational Equations Initializing Neuro-Fuzzy System , 2002 .

[59]  Piotr Duda,et al.  On Pre-processing Algorithms for Data Stream , 2012, ICAISC.

[60]  M. Aurangzeb Khan,et al.  Velocity-Image Model for Online Signature Verification , 2006, IEEE Transactions on Image Processing.

[61]  Hong Yan,et al.  Stability and style-variation modeling for on-line signature verification , 2003, Pattern Recognit..

[62]  Meng Joo Er,et al.  A New Method for the Dynamic Signature Verification Based on the Stable Partitions of the Signature , 2015, ICAISC.

[63]  Rafal Scherer,et al.  Neuro-fuzzy Systems with Relation Matrix , 2010, ICAISC.

[64]  Krzysztof Cpalka A Method for Designing Flexible Neuro-fuzzy Systems , 2006, ICAISC.

[65]  Magdalena Laskowska,et al.  Mesoporous silica SBA-15 functionalized by nickel–phosphonic units: Raman and magnetic analysis , 2014 .

[66]  Marcin Zalasinski,et al.  Novel Algorithm for the On-Line Signature Verification , 2012, ICAISC.

[67]  Marcin Zalasinski,et al.  On-line signature verification using vertical signature partitioning , 2014, Expert Syst. Appl..

[68]  Yoichi Hayashi,et al.  On the Strong Convergence of the Orthogonal Series-Type Kernel Regression Neural Networks in a Non-stationary Environment , 2012, ICAISC.

[69]  Danuta Rutkowska,et al.  Medical Diagnosis with Type-2 Fuzzy Decision Trees , 2009 .

[70]  Meng Joo Er,et al.  New Method for Dynamic Signature Verification Using Hybrid Partitioning , 2014, ICAISC.

[71]  Marcin Korytkowski,et al.  Fast image classification by boosting fuzzy classifiers , 2016, Inf. Sci..

[72]  Krzysztof Cpałka,et al.  A new method of on-line signature verification using a flexible fuzzy one-class classifier , 2011 .

[73]  L. Rutkowski,et al.  Flexible weighted neuro-fuzzy systems , 2002, Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02..

[74]  Yoichi Hayashi,et al.  New Method for Dynamic Signature Verification Based on Global Features , 2014, ICAISC.

[75]  Loris Nanni,et al.  Ensemble of on-line signature matchers based on OverComplete feature generation , 2009, Expert Syst. Appl..

[76]  Leszek Rutkowski,et al.  A new algorithm for identity verification based on the analysis of a handwritten dynamic signature , 2016, Appl. Soft Comput..

[77]  Marcin Korytkowski,et al.  Forecasting Wear of Head and Acetabulum in Hip Joint Implant , 2012, ICAISC.

[78]  Leszek Rutkowski,et al.  Flexible neuro-fuzzy systems , 2003, IEEE Trans. Neural Networks.

[79]  Leszek Rutkowski,et al.  New method for the on-line signature verification based on horizontal partitioning , 2014, Pattern Recognit..

[80]  Loris Nanni,et al.  Advanced methods for two-class problem formulation for on-line signature verification , 2006, Neurocomputing.

[81]  Krystian Lapa,et al.  A new method for designing neuro-fuzzy systems for nonlinear modelling with interpretability aspects , 2014, Neurocomputing.

[82]  E. Rafajłowicz,et al.  On optimal global rate of convergence of some nonparametric identification procedures , 1989 .

[83]  Catalin Teodoriu,et al.  Application Of Artificial Intelligence Methods In Drilling System Design And Operations: A Review Of The State Of The Art , 2015, J. Artif. Intell. Soft Comput. Res..

[84]  Rafal Doroz,et al.  Dynamic signature verification method based on association of features with similarity measures , 2016, Neurocomputing.

[85]  Petia D. Koprinkova-Hristova,et al.  New Method for Nonlinear Fuzzy Correction Modelling of Dynamic Objects , 2014, ICAISC.

[86]  Piotr Dziwiñski,et al.  A New Approach to Nonlinear Modeling Based on Significant Operating Points Detection , 2015, ICAISC.

[87]  Lipo Wang,et al.  Evolutionary Approach with Multiple Quality Criteria for Controller Design , 2014, ICAISC.

[88]  Leszek Rutkowski,et al.  A general approach for nonparametric fitting of functions and their derivatives with applications to linear circuits identification , 1986 .

[89]  Rudolf Kruse,et al.  On Merging and Dividing Social Graphs , 2015, J. Artif. Intell. Soft Comput. Res..

[90]  Lukasz Bartczuk Gene Expression Programming in Correction Modelling of Nonlinear Dynamic Objects , 2015, ISAT.

[91]  L. Rutkowski,et al.  Nonparametric fitting of multivariate functions , 1986 .