Wave-like properties of solar supergranulation

[1]  J. Kuhn,et al.  Rossby waves on the Sun as revealed by solar ‘hills’ , 2000, Nature.

[2]  Robert F. Stein,et al.  Realistic Solar Convection Simulations , 2000 .

[3]  L. Gizon,et al.  Time-Distance Helioseismology with f Modes as a Method for Measurement of Near-Surface Flows , 2000 .

[4]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[5]  J. Schou,et al.  Flows and Horizontal Displacements from Ring Diagrams , 1998 .

[6]  R. S. Bogart,et al.  A subsurface flow of material from the Sun's equator to its poles , 1997, Nature.

[7]  T. Pan,et al.  Recognition of the T stem-loop of a pre-tRNA substrate by the ribozyme from Bacillus subtilis ribonuclease P. , 1997, Biochemistry.

[8]  G. Murshudov,et al.  Refinement of macromolecular structures by the maximum-likelihood method. , 1997, Acta crystallographica. Section D, Biological crystallography.

[9]  J. Toomre,et al.  Turbulent Compressible Convection with Rotation. I. Flow Structure and Evolution , 1996 .

[10]  James W. Brown,et al.  Structure and evolution of ribonuclease P RNA in Gram-positive bacteria. , 1996, Nucleic acids research.

[11]  D. Chelton,et al.  Global Observations of Oceanic Rossby Waves , 1996, Science.

[12]  P. Matthews,et al.  Nonlinear Compressible Convection in Oblique Magnetic Fields , 1996 .

[13]  T. Pan,et al.  Probing of tertiary interactions in RNA: 2'-hydroxyl-base contacts between the RNase P RNA and pre-tRNA. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[14]  C. Wolff Oscillation-Convection Coupling: Cause of Supergranulation? , 1995 .

[15]  J. Harvey,et al.  Meridional flow of small photospheric magnetic features , 1993 .

[16]  N. Pace,et al.  Circularly permuted tRNAs as specific photoaffinity probes of ribonuclease P RNA structure. , 1993, Science.

[17]  P. Matthews,et al.  Travelling and standing waves in magnetoconvection , 1993, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[18]  J. Harvey,et al.  Rotation rates of small magnetic features from two- and one-dimensional cross-correlation analyses , 1993 .

[19]  J. Harvey,et al.  Time–distance helioseismology , 1993, Nature.

[20]  Alan M. Title,et al.  The solar oscillations investigation - Michelson Doppler Imager. , 1992 .

[21]  Steinberg,et al.  Asymmetric modes and the transition to vortex structures in rotating Rayleigh-Bénard convection. , 1991, Physical review letters.

[22]  W. Hendrickson Determination of macromolecular structures from anomalous diffraction of synchrotron radiation. , 1991, Science.

[23]  Herschel B. Snodgrass,et al.  Rotation of Doppler Features in the Solar Photosphere , 1990 .

[24]  Walden,et al.  Traveling waves and chaos in convection in binary fluid mixtures. , 1985, Physical review letters.

[25]  N. Weiss,et al.  Convection and magnetic fields in stars , 1981 .

[26]  T. Duvall The equatorial rotation rate of the supergranulation cells , 1980 .

[27]  R. V. D. Borght Finite-Amplitude Convection in a Compressible Medium and its Application to Solar Granulation , 1975 .

[28]  G. W. Simon,et al.  Velocity Fields in the Solar Atmosphere. III. Large-Scale Motions, the Chromospheric Network, and Magnetic Fields. , 1964 .

[29]  Robert B. Leighton,et al.  VELOCITY FIELDS IN THE SOLAR ATMOSPHERE. I. PRELIMINARY REPORT , 1962 .

[30]  J. Schou,et al.  Supergranulation rotation , 2000 .

[31]  P. Gilman Fluid Dynamics and MHD of the Solar Convection Zone and Tachocline: Current Understanding and Unsolved Problems , 1999 .

[32]  R. Howard Velocity fields in the solar atmosphere , 1967 .

[33]  T. Clune,et al.  THREE-DIMENSIONAL SPHERICAL SIMULATIONS OF SOLAR CONVECTION. I. DIFFERENTIAL ROTATION AND PATTERN EVOLUTION ACHIEVED WITH LAMINAR AND TURBULENT STATES , 2022 .