Diffusion in a one-dimensional random medium and hyperbolic Brownian motion

Classical diffusion in a random medium involves an exponential functional of Brownian motion. This functional also appears in the study of Brownian diffusion on a Riemann surface of constant negative curvature. We analyse in detail this relationship and study various distributions using stochastic calculus and functional integration.

[1]  R. K. Brown BIOPHYSICS , 1931 .

[2]  V. N. Tutubalin,et al.  Limit Theorems for the Compositions of Distributions in the Lobachevsky Plane and Space , 1959 .

[3]  V. Vasil’ev,et al.  Waveguides with Random Inhomogeneities and Brownian Motion In the Lobachevsky Plane , 1959 .

[4]  George Papanicolaou,et al.  Wave Propagation in a One-Dimensional Random Medium , 1971 .

[5]  Frederick Solomon Random Walks in a Random Environment , 1975 .

[6]  Harry Kesten,et al.  A limit law for random walk in a random environment , 1975 .

[7]  H. Kleinert,et al.  Solution of the path integral for the H-atom , 1979 .

[8]  Treatment of some singular potentials by change of variables in Wiener integrals , 1981 .

[9]  B. Derrida,et al.  Classical Diffusion on a Random Chain , 1982 .

[10]  Bernard Derrida,et al.  Velocity and diffusion constant of a periodic one-dimensional hopping model , 1983 .

[11]  B Derrida,et al.  Singular behaviour of certain infinite products of random 2 × 2 matrices , 1983 .

[12]  Ì. H. Duru Morse-potential Green's function with path integrals , 1983 .

[13]  C. W. Gardiner,et al.  Handbook of stochastic methods - for physics, chemistry and the natural sciences, Second Edition , 1986, Springer series in synergetics.

[14]  J. M. Luck,et al.  On the distribution of a random variable occurring in 1D disordered systems , 1985 .

[15]  A. Terras Harmonic Analysis on Symmetric Spaces and Applications I , 1985 .

[16]  K. Vahala Handbook of stochastic methods for physics, chemistry and the natural sciences , 1986, IEEE Journal of Quantum Electronics.

[17]  C. DeWitt-Morette,et al.  Time subsitutions in stochastic processes as a tool in path integration , 1986 .

[18]  N. Balazs,et al.  Chaos on the pseudosphere , 1986 .

[19]  A. Comtet On the Landau Levels on the Hyperbolic Plane , 1987 .

[20]  P. A. Mello,et al.  Macroscopic approach to multichannel disordered conductors , 1988 .

[21]  J. Bouchaud,et al.  Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications , 1990 .

[22]  A. Comtet,et al.  Classical diffusion of a particle in a one-dimensional random force field , 1990 .

[23]  A. Huffmann Disordered wires from a geometric viewpoint , 1990 .

[24]  D. Dufresne The Distribution of a Perpetuity, with Applications to Risk Theory and Pension Funding , 1990 .

[25]  Jorge V. José,et al.  Chaos in classical and quantum mechanics , 1990 .

[26]  Moreau,et al.  Non-Fickian steady flux in a one-dimensional Sinai-type disordered system. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[27]  F. Delbaen,et al.  The Laplace transform of annuities certain with exponential time distribution , 1992 .

[28]  M. Yor On some exponential functionals of Brownian motion , 1992, Advances in Applied Probability.

[29]  Ideas and methods in quantum and statistical physics , 1992 .

[30]  M. Yor From Planar Brownian Windings to Asian Options , 1993 .

[31]  Behavior of transport characteristics in several one-dimensional disordered systems , 1993 .

[32]  Beenakker,et al.  Nonlogarithmic repulsion of transmission eigenvalues in a disordered wire. , 1993, Physical review letters.

[33]  S. V. Lawande,et al.  Path-integral methods and their applications , 1993 .

[34]  M. Yor,et al.  BESSEL PROCESSES, ASIAN OPTIONS, AND PERPETUITIES , 1993 .

[35]  G. Oshanin,et al.  Steady flux in a continuous-space Sinai chain , 1993 .

[36]  A. Comtet,et al.  On the flux distribution in a one dimensional disordered system , 1994 .

[37]  The Spatial Statistical Properties of Wave Functions in a Disordered Finite One-Dimensional Sample , 1994 .

[38]  Caselle Distribution of Transmission Eigenvalues in Disordered Wires. , 1994, Physical review letters.