Solar Wind and Interplanetary Magnetic Field: A Tutorial

The convection layer completes the transport of energy from the nuclear furnace at the center of the sun to its radiation into space by the photosphere, but most importantly for the solar wind it sets the temporal and spatial scales for the structure of the coronal magnetic field that in turn controls the properties of the solar wind. In this tutorial review we examine the properties of the fields and particles that constitute the solar wind and ultimately affect space weather and the underlying physical processes. In particular we discuss the role of the coronal magnetic field; the effect of the rotation of the sun; and the properties of the principal solar wind disturbance at 1 Astronomical Unit, the interplanetary coronal mass ejection.

[1]  J. Gosling Coronal Mass Ejections and Magnetic Flux Ropes in Interplanetary Space , 2013 .

[2]  V. Pizzo Interplanetary Shocks on the Large Scale: A Retrospective on the Last Decade's Theoretical Efforts , 2013 .

[3]  C. Russell,et al.  Multispacecraft modeling of the flux rope structure of interplanetary coronal mass ejections: Cylindrically symmetric versus nonsymmetric topologies , 2001 .

[4]  N. Meyer‐Vernet Large scale structure of planetary environments: the importance of not being Maxwellian , 2001 .

[5]  C. Russell,et al.  Lessons from the ring current injection during the September 24, 25, 1998 storm , 2000 .

[6]  C. Russell,et al.  Intercomparison of NEAR and Wind interplanetary coronal mass ejection observations , 1999 .

[7]  J. Linker,et al.  Magnetohydrodynamic modeling of the solar corona during Whole Sun Month , 1999 .

[8]  J. Luhmann,et al.  Solar cycle evolution of the structure of magnetic clouds in the inner heliosphere , 1998 .

[9]  P. Lamy,et al.  LASCO observations of an Earth‐directed coronal mass ejection on May 12, 1997 , 1998 .

[10]  K. L. Harvey,et al.  Spatial structure of the solar wind and comparisons with solar data and models , 1998 .

[11]  J. Gosling Physical nature of the low-speed solar wind , 1996 .

[12]  W. Feldman Coronal structure inferred from remote sensing observations , 1996 .

[13]  C. Russell,et al.  The 22‐year variation of geomagnetic activity: Implications for the polar magnetic field of the Sun , 1995 .

[14]  R. Noll,et al.  Constitutional Reform in California: Making State Government More Effective and Responsive , 1995 .

[15]  C. Russell,et al.  Coronal mass ejection and stream interaction region characteristics and their potential geomagnetic effectiveness , 1995 .

[16]  A. Hundhausen The Solar Wind , 1995 .

[17]  C. Russell,et al.  Solar cycle 21 effects on the Interplanetary Magnetic Field and related parameters at 0.7 and 1.0 AU , 1993 .

[18]  J. Scudder Why all stars should possess circumstellar temperature inversions , 1992 .

[19]  Christopher T. Russell,et al.  Solar cycle variations in the size and shape of the magnetopause , 1991 .

[20]  L. Burlaga,et al.  Magnetic field structure of interplanetary magnetic clouds at 1 AU , 1990 .

[21]  N. Sheeley,et al.  Solar wind speed and coronal flux-tube expansion , 1990 .

[22]  H. Rosenbauer,et al.  Estimates of alpha particle heating in the solar wind inside 0.3 AU , 1989 .

[23]  L. Burlaga,et al.  Magnetic clouds and force‐free fields with constant alpha , 1988 .

[24]  H. Rosenbauer,et al.  Characteristics of electron velocity distribution functions in the solar wind derived from the helios plasma experiment , 1987 .

[25]  H. Rosenbauer,et al.  Variations of electron distribution functions in the solar wind , 1987 .

[26]  L. Burlaga,et al.  Coulomb collisions in the solar wind , 1985 .

[27]  J. Scudder,et al.  Polar rain - Solar coronal electrons in the earth's magnetosphere , 1985 .

[28]  C. Russell,et al.  Evidence for helical kink instability in the Venus magnetic flux ropes , 1983 .

[29]  C. Russell,et al.  Observation of magnetic flux ropes in the Venus ionosphere , 1979, Nature.

[30]  C. Russell,et al.  An empirical relationship between interplanetary conditions and Dst , 1975 .

[31]  W. Feldman,et al.  Solar wind electrons , 1975 .

[32]  C. Russell On the possibility of deducing interplanetary and solar parameters from geomagnetic records , 1975 .

[33]  W. Feldman,et al.  Abundance differences in solar wind double streams , 1974 .

[34]  U. R. Rao,et al.  The solar wind velocity and its correlation with cosmic-ray variations and with solar and geomagnetic activity , 1963 .

[35]  E. Parker Dynamics of the Interplanetary Gas and Magnetic Fields , 1958 .

[36]  T. Sun,et al.  The sun, our star , 2011 .

[37]  J. Slavin,et al.  Small‐scale magnetic flux ropes in the solar wind , 2000 .

[38]  David J. McComas,et al.  Ulysses' return to the slow solar wind , 1998 .

[39]  J. Luhmann Sources of interplanetary shocks , 1995 .

[40]  C. Russell,et al.  On the sources of interplanetary shocks at 0.72 AU , 1994 .

[41]  Bruce T. Tsurutani,et al.  Collisionless shocks in the heliosphere: reviews of current research , 1985 .

[42]  C. Russell,et al.  Magnetic flux ropes in the Venus ionosphere: Observations and models , 1983 .

[43]  C. Russell,et al.  Global characteristics of magnetic flux ropes in the Venus ionosphere , 1983 .

[44]  H. Rosenbauer,et al.  Solar wind protons: Three-dimensional velocity distributions and derived plasma parameters measured between 0.3 and 1 AU , 1982 .

[45]  R. Kopp,et al.  Gas-magnetic field interactions in the solar corona , 1971 .