Improved Torsion-Point Attacks on SIDH Variants
暂无分享,去创建一个
Victoria de Quehen | Katherine E. Stange | Lorenz Panny | Chloe Martindale | P'eter Kutas | Christophe Petit | Chris Leonardi | C. Petit | C. Martindale | Lorenz Panny | Christopher Leonardi | Péter Kutas
[1] Lorenz Panny,et al. How to not break SIDH , 2019, IACR Cryptol. ePrint Arch..
[2] John J. Cannon,et al. The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..
[3] Rajeev Anand Sahu,et al. Supersingular Isogeny-Based Designated Verifier Blind Signature , 2019, IACR Cryptol. ePrint Arch..
[4] Kristin E. Lauter,et al. Hard and Easy Problems for Supersingular Isogeny Graphs , 2017, IACR Cryptol. ePrint Arch..
[5] David Jao,et al. Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies , 2011, J. Math. Cryptol..
[6] Kristin E. Lauter,et al. Supersingular Isogeny Graphs and Endomorphism Rings: Reductions and Solutions , 2018, EUROCRYPT.
[7] Martin E. Hellman,et al. An improved algorithm for computing logarithms over GF(p) and its cryptographic significance (Corresp.) , 1978, IEEE Trans. Inf. Theory.
[8] Christophe Petit,et al. SÉTA: Supersingular Encryption from Torsion Attacks , 2019, IACR Cryptol. ePrint Arch..
[9] Craig Costello,et al. B-SIDH: supersingular isogeny Diffie-Hellman using twisted torsion , 2019, IACR Cryptol. ePrint Arch..
[10] Lajos Rónyai,et al. Finding maximal orders in semisimple algebras over Q , 1993, computational complexity.
[11] Steven D. Galbraith,et al. Computing isogenies between supersingular elliptic curves over F_p , 2013 .
[12] Seiichiro Tani. An Improved Claw Finding Algorithm Using Quantum Walk , 2007, MFCS.
[13] Kristin E. Lauter,et al. On the quaternion $\ell$-isogeny path problem , 2014 .
[14] Tanja Lange,et al. CSIDH: An Efficient Post-Quantum Commutative Group Action , 2018, IACR Cryptol. ePrint Arch..
[15] C. Siegel,et al. Über die Classenzahl quadratischer Zahlkörper , 1935 .
[16] Karim Belabas,et al. User’s Guide to PARI / GP , 2000 .
[17] Péter Kutas,et al. On the Isogeny Problem with Torsion Point Information , 2021, IACR Cryptol. ePrint Arch..
[18] David Jao,et al. A Quantum Algorithm for Computing Isogenies between Supersingular Elliptic Curves , 2014, INDOCRYPT.
[19] John Cremona,et al. Efficient solution of rational conics , 2003, Math. Comput..
[20] Steven D. Galbraith,et al. Computing isogenies between supersingular elliptic curves over Fp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mat , 2013, Designs, Codes and Cryptography.
[21] David Kohel,et al. Orienting supersingular isogeny graphs , 2020, IACR Cryptol. ePrint Arch..
[22] Wouter Castryck,et al. Rational Isogenies from Irrational Endomorphisms , 2020, IACR Cryptology ePrint Archive.
[23] Noboru Kunihiro,et al. Multi-party Key Exchange Protocols from Supersingular Isogenies , 2018, 2018 International Symposium on Information Theory and Its Applications (ISITA).
[24] Samuel Jaques,et al. Quantum cryptanalysis in the RAM model: Claw-finding attacks on SIKE , 2019, IACR Cryptol. ePrint Arch..
[25] Paul Bottinelli,et al. The Dark SIDH of Isogenies , 2019, IACR Cryptol. ePrint Arch..
[26] Christophe Petit,et al. Faster Algorithms for Isogeny Problems Using Torsion Point Images , 2017, ASIACRYPT.
[27] Masanobu Kaneko,et al. Supersingular j-invariants as singular moduli mod p , 1989 .
[28] Helen Tera,et al. Post-Quantum Cryptography Standardization , 2017 .
[29] John Voight,et al. Identifying the Matrix Ring: Algorithms for Quaternion Algebras and Quadratic Forms , 2010, 1004.0994.
[30] Samuel Jaques,et al. Low-gate Quantum Golden Collision Finding , 2020, IACR Cryptol. ePrint Arch..
[31] Dan Boneh,et al. Supersingular Curves With Small Non-integer Endomorphisms , 2019, ArXiv.
[32] Hiroshi Onuki. On oriented supersingular elliptic curves , 2021, Finite Fields Their Appl..
[33] Francisco Rodríguez-Henríquez,et al. On the cost of computing isogenies between supersingular elliptic curves , 2018, IACR Cryptol. ePrint Arch..
[34] Reza Azarderakhsh,et al. Practical Supersingular Isogeny Group Key Agreement , 2019, IACR Cryptol. ePrint Arch..
[35] Dan Boneh,et al. Oblivious Pseudorandom Functions from Isogenies , 2020, ASIACRYPT.
[36] Steven D. Galbraith,et al. On the Security of Supersingular Isogeny Cryptosystems , 2016, ASIACRYPT.
[37] Kristin E. Lauter,et al. On the quaternion -isogeny path problem , 2014, LMS J. Comput. Math..