Kleene stars of the plane, polylogarithms and symmetries

We extend the definition and construct several bases for polylogarithms Li T , where T are some series, recognizable by a finite state (multiplicity) automaton of alphabet 4 X = {x 0 , x 1 }. The kernel of this new "polylogarithmic map" Li $\bullet$ is also characterized and provides a rewriting process which terminates to a normal form. We concentrate on algebraic and analytic aspects of this extension allowing index polylogarithms at non positive multi-indices, by rational series and regularize polyzetas at non positive multi-indices.

[1]  Karol A. Penson,et al.  About Some Drinfel'd Associators , 2018, CASC.

[2]  Marcel Paul Schützenberger,et al.  On the Definition of a Family of Automata , 1961, Inf. Control..

[3]  R. Remmert,et al.  Theory of Complex Functions , 1990 .

[4]  Gérard Duchamp,et al.  Independence of Hyperlogarithms over Function Fields via Algebraic Combinatorics , 2011, CAI.

[5]  Vincel Hoang Ngoc Minh,et al.  On a conjecture by Pierre Cartier about a group of associators , 2009, 0910.1932.

[6]  Sylvie Paycha,et al.  Nested sums of symbols and renormalized multiple zeta values , 2010 .

[7]  Donald E. Knuth,et al.  Johann Faulhaber and sums of powers , 1992, math/9207222.

[8]  Christophe Tollu,et al.  (Pure) transcendence bases in φ-deformed shuffle bialgebras , 2015, ArXiv.

[9]  Alain Lascoux,et al.  Noncommutative symmetric functions , 1994 .

[10]  Vincel Hoang Ngoc Minh,et al.  Noncommutative algebra, multiple harmonic sums and applications in discrete probability , 2009, J. Symb. Comput..

[11]  Hyunjoong Kim,et al.  Functional Analysis I , 2017 .

[12]  Jean Berstel,et al.  Rational series and their languages , 1988, EATCS monographs on theoretical computer science.

[13]  Sylvie Paycha,et al.  Nested sums of symbols and renormalised multiple zeta functions , 2007 .

[14]  Christophe Tollu,et al.  Sweedler's duals and Schützenberger's calculus , 2007, ArXiv.

[15]  Christophe Reutenauer,et al.  Un critère de rationalité provenant de la géométrie non commutative , 1997 .

[16]  Quoc Hoan Ngo,et al.  Harmonic sums and polylogarithms at non-positive multi-indices , 2016, J. Symb. Comput..

[17]  A. Goncharov,et al.  Multiple polylogarithms and mixed Tate motives , 2001 .

[18]  Jianqiang Zhao,et al.  ANALYTIC CONTINUATION OF MULTIPLE ZETA FUNCTIONS , 1999 .

[19]  Israel M. Gelfand,et al.  Noncommutative Symmetrical Functions , 1995 .

[20]  Gérard Duchamp,et al.  Harmonic sums and polylogarithms at negative multi-indices , 2015, ACCA.

[21]  Hirofumi Tsumura,et al.  Desingularization of multiple zeta-functions of generalized Hurwitz-Lerch type , 2014, 1404.4758.

[22]  Li Guo,et al.  Renormalization of multiple zeta values , 2006 .

[23]  Samuel Eilenberg,et al.  Automata, languages, and machines. A , 1974, Pure and applied mathematics.

[24]  Hoang Ngoc Minh Summations of polylogarithms via evaluation transform , 1996 .

[25]  J.dieudonne Treatise On Analysis Vol-ii , 1976 .

[26]  Michel Petitot,et al.  Lyndon words, polylogarithms and the Riemann Zeta function , 2000, Discret. Math..

[27]  V. Hoang Ngoc Minh,et al.  Evaluation Transform , 1991, Theor. Comput. Sci..

[28]  Michel Petitot,et al.  Combinatorial aspects of polylogarithms and Euler-Zagier sums. (Aspects combinatoires des polylogarithmes et des sommes d'Euler-Zagier.) , 1999 .

[29]  David E. Radford,et al.  A natural ring basis for the shuffle algebra and an application to group schemes , 1979 .

[30]  C. Reutenauer Free Lie Algebras , 1993 .

[31]  J. A. Lappo-Danilevsky Mémoires sur la théorie des systémes des équations différentielles linéaires , 1954 .