State-space approach to propagation path parameter estimation and tracking

In this paper we address the problem of propagation path parameter estimation in channel sounding. Propagation parameter estimation is crucial in creating realistic channel models that may be used to study the performance of multiantenna (MIMO) transceivers as well as in network planning. The proposed approach employs a nonlinear state-space model in order to capture the dynamics of the channel parameters in time. Both specular and diffuse components are considered. Extended Kalman filtering is used to estimate the state. The computational complexity is reduced by applying the matrix inversion lemma. Hence, significant savings in computation compared to conventional iterative methods is obtained. The method gives insight into the dynamic behavior of the propagation parameters, allows parameter pairing over time and facilitates analyzing the path lifetime in different measurement scenarios. The performance of the proposed technique is demonstrated using real-world channel sounding measurements.

[1]  Christoph F. Mecklenbräuker,et al.  Multidimensional Rank Reduction Estimator for Parametric MIMO Channel Models , 2004, EURASIP J. Adv. Signal Process..

[2]  U. Trautwein,et al.  Exploring the performance of turbo MIMO equalization in real field scenarios , 2002, The 5th International Symposium on Wireless Personal Multimedia Communications.

[3]  Klaus I. Pedersen,et al.  Channel parameter estimation in mobile radio environments using the SAGE algorithm , 1999, IEEE J. Sel. Areas Commun..

[4]  R.S. Thoma,et al.  DoA resolution limits in MIMO channel sounding , 2004, IEEE Antennas and Propagation Society Symposium, 2004..

[5]  Nicolai Czink,et al.  Automatic Clustering of Nonstationary MIMO Channel Parameter Estimates , 2005 .

[6]  R.S. Thoma,et al.  Maximum likelihood channel parameter estimation from multidimensional channel sounding measurements , 2003, The 57th IEEE Semiannual Vehicular Technology Conference, 2003. VTC 2003-Spring..

[7]  Andreas Richter Parametric Modelling and Estimation of Distributed Diffuse Scattering Components of Radio Channels , 2003 .

[8]  B. Achiriloaie,et al.  VI REFERENCES , 1961 .

[9]  Reiner S. Thomä,et al.  A GRADIENT BASED ALGORITHM FOR PATH PARAMETER TRACKING IN CHANNEL SOUNDING , 2004 .

[10]  M. J. Gans,et al.  On Limits of Wireless Communications in a Fading Environment when Using Multiple Antennas , 1998, Wirel. Pers. Commun..

[11]  Andreas F. Molisch,et al.  The double-directional radio channel , 2001 .

[12]  Gerd Sommerkorn,et al.  Measurement-based parametric channel modelling (MBPCM) , 2003 .

[13]  Israel Gohberg,et al.  Fast Algorithms with Preprocessing for Matrix-Vector Multiplication Problems , 1994, J. Complex..

[14]  Reiner S. Thomä,et al.  Capacity of MIMO systems based on measured wireless channels , 2002, IEEE J. Sel. Areas Commun..