Entorhinal Cortical Ocean Cells Encode Specific Contexts and Drive Context-Specific Fear Memory

[1]  W. Scoville,et al.  LOSS OF RECENT MEMORY AFTER BILATERAL HIPPOCAMPAL LESIONS , 1957, Journal of neurology, neurosurgery, and psychiatry.

[2]  J. Altman,et al.  Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats , 1965, The Journal of comparative neurology.

[3]  D Marr,et al.  Simple memory: a theory for archicortex. , 1971, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[4]  W. Cowan,et al.  An autoradiographic study of the time of origin and the pattern of granule cell migration in the dentate gyrus of the rat , 1975, The Journal of comparative neurology.

[5]  O. Steward,et al.  Topographic organization of the projections from the entorhinal area to the hippocampal formation of the rat , 1976, The Journal of comparative neurology.

[6]  D. Amaral,et al.  The three-dimensional organization of the hippocampal formation: A review of anatomical data , 1989, Neuroscience.

[7]  M. Yeckel,et al.  Feedforward excitation of the hippocampus by afferents from the entorhinal cortex: redefinition of the role of the trisynaptic pathway. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[8]  T. Seki,et al.  Highly polysialylated neural cell adhesion molecule (NCAM-H) is expressed by newly generated granule cells in the dentate gyrus of the adult rat , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[9]  James L. McClelland,et al.  Hippocampal conjunctive encoding, storage, and recall: Avoiding a trade‐off , 1994, Hippocampus.

[10]  E. Rolls,et al.  Computational analysis of the role of the hippocampus in memory , 1994, Hippocampus.

[11]  F. Gage,et al.  Neurogenesis in the adult human hippocampus , 1998, Nature Medicine.

[12]  Paul E. Gilbert,et al.  Testing neural network models of memory with behavioral experiments , 2000, Current Opinion in Neurobiology.

[13]  M. Witter,et al.  Anatomical Organization of the Parahippocampal‐Hippocampal Network , 2000, Annals of the New York Academy of Sciences.

[14]  H. Eichenbaum A cortical–hippocampal system for declarative memory , 2000, Nature Reviews Neuroscience.

[15]  D. Wilkin,et al.  Neuron , 2001, Brain Research.

[16]  Paul E. Gilbert,et al.  Dissociating hippocampal subregions: A double dissociation between dentate gyrus and CA1 , 2001, Hippocampus.

[17]  L. Frank,et al.  Behavioral/Systems/Cognitive Hippocampal Plasticity across Multiple Days of Exposure to Novel Environments , 2022 .

[18]  P. Jonas,et al.  Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus , 2004, Nature.

[19]  E. Tulving [Episodic memory: from mind to brain]. , 2004, Revue neurologique.

[20]  A. Treves,et al.  Distinct Ensemble Codes in Hippocampal Areas CA3 and CA1 , 2004, Science.

[21]  T. Hafting,et al.  Microstructure of a spatial map in the entorhinal cortex , 2005, Nature.

[22]  Mark Mayford,et al.  Localization of a Stable Neural Correlate of Associative Memory , 2007, Science.

[23]  S. Ge,et al.  A Critical Period for Enhanced Synaptic Plasticity in Newly Generated Neurons of the Adult Brain , 2007, Neuron.

[24]  M. Moser,et al.  Pattern Separation in the Dentate Gyrus and CA3 of the Hippocampus , 2007, Science.

[25]  M. Wilson,et al.  Dentate Gyrus NMDA Receptors Mediate Rapid Pattern Separation in the Hippocampal Network , 2007, Science.

[26]  M. Witter,et al.  What Does the Anatomical Organization of the Entorhinal Cortex Tell Us? , 2008, Neural plasticity.

[27]  C. Stark,et al.  Pattern Separation in the Human Hippocampal CA3 and Dentate Gyrus , 2008, Science.

[28]  Anirvan Ghosh,et al.  Krüppel-Like Factor 9 Is Necessary for Late-Phase Neuronal Maturation in the Developing Dentate Gyrus and during Adult Hippocampal Neurogenesis , 2009, The Journal of Neuroscience.

[29]  Takashi Kitamura,et al.  Adult Neurogenesis Modulates the Hippocampus-Dependent Period of Associative Fear Memory , 2009, Cell.

[30]  L. Saksida,et al.  A Functional Role for Adult Hippocampal Neurogenesis in Spatial Pattern Separation , 2009, Science.

[31]  I. Soltesz,et al.  Target-selective GABAergic control of entorhinal cortex output , 2010, Nature Neuroscience.

[32]  Lisa M. Saksida,et al.  Running enhances spatial pattern separation in mice , 2010, Proceedings of the National Academy of Sciences.

[33]  F. Gage,et al.  New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory? , 2010, Nature Reviews Neuroscience.

[34]  Alexander J. Rivest,et al.  Entorhinal Cortex Layer III Input to the Hippocampus Is Crucial for Temporal Association Memory , 2011, Science.

[35]  P. Strata,et al.  Learning-related feedforward inhibitory connectivity growth required for memory precision , 2011, Nature.

[36]  A. Fenton,et al.  Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation , 2011, Nature.

[37]  Lief E. Fenno,et al.  Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins , 2011, Nature Methods.

[38]  K. Deisseroth,et al.  Optogenetic stimulation of a hippocampal engram activates fear memory recall , 2012, Nature.

[39]  René Hen,et al.  NR2B-Dependent Plasticity of Adult-Born Granule Cells is Necessary for Context Discrimination , 2012, The Journal of Neuroscience.

[40]  P. Frankland,et al.  Suppression of adult neurogenesis impairs population coding of similar contexts in hippocampal CA3 region , 2012, Nature Communications.

[41]  S. Tonegawa,et al.  Young Dentate Granule Cells Mediate Pattern Separation, whereas Old Granule Cells Facilitate Pattern Completion , 2012, Cell.

[42]  Hongkui Zeng,et al.  Differential Control of Learning and Anxiety along the Dorsoventral Axis of the Dentate Gyrus , 2013, Neuron.

[43]  Stefan R. Pulver,et al.  Ultra-sensitive fluorescent proteins for imaging neuronal activity , 2013, Nature.

[44]  Lacey J. Kitch,et al.  Long-term dynamics of CA1 hippocampal place codes , 2013, Nature Neuroscience.

[45]  S. Tonegawa,et al.  Creating a False Memory in the Hippocampus , 2013, Science.

[46]  Thomas J McHugh,et al.  The Hippocampal CA2 Ensemble Is Sensitive to Contextual Change , 2014, The Journal of Neuroscience.

[47]  Michele Pignatelli,et al.  Cell type-specific genetic and optogenetic tools reveal novel hippocampal CA 2 circuits , 2014 .

[48]  S. Tonegawa,et al.  Differential roles of the dopamine 1-class receptors, D1R and D5R, in hippocampal dependent memory , 2014, Proceedings of the National Academy of Sciences.

[49]  Kenji F. Tanaka,et al.  Hippocampal Memory Traces Are Differentially Modulated by Experience, Time, and Adult Neurogenesis , 2014, Neuron.

[50]  M. Brecht,et al.  Grid-Layout and Theta-Modulation of Layer 2 Pyramidal Neurons in Medial Entorhinal Cortex , 2014, Science.

[51]  S. Tonegawa,et al.  Island Cells Control Temporal Association Memory , 2014, Science.

[52]  Ian R. Wickersham,et al.  Cell type-specific genetic and optogenetic tools reveal novel hippocampal CA2 circuits , 2013, Nature Neuroscience.

[53]  Lacey J. Kitch,et al.  Distinct speed dependence of entorhinal island and ocean cells, including respective grid cells , 2015, Proceedings of the National Academy of Sciences.