QLEDs for displays and solid-state lighting

The mainstream commercialization of colloidal quantum dots (QDs) for light-emitting applications has begun: Sony televisions emitting QD-enhanced colors are now on sale. The bright and uniquely size-tunable colors of solution-processable semiconducting QDs highlight the potential of electroluminescent QD light-emitting devices (QLEDs) for use in energy-efficient, high-color-quality thin-film display and solid-state lighting applications. Indeed, this year’s report of record-efficiency electrically driven QLEDs rivaling the most efficient molecular organic LEDs, together with the emergence of full-color QLED displays, foreshadow QD technologies that will transcend the optically excited QD-enhanced products already available. In this article, we discuss the key advantages of using QDs as luminophores in LEDs and outline the 19-year evolution of four types of QLEDs that have seen efficiencies rise from less than 0.01% to 18%. With an emphasis on the latest advances, we identify the key scientific and technological challenges facing the commercialization of QLEDs. A quantitative analysis, based on published small-scale synthetic procedures, allows us to estimate the material costs of QDs typical in light-emitting applications when produced in large quantities and to assess their commercial viability.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  T. Horihata,et al.  Ligand-Substitution Reaction Kinetics of Tris(8-quinolinolato)- and Bis(2-methyl-8-quinolinolato)(8-quinolinolato)aluminum(III) Complexes with Ethylenediamine-N,N,N′,N′-tetraacetic Acid , 1988 .

[3]  C. H. Chen,et al.  Electroluminescence of doped organic thin films , 1989 .

[4]  M. Bawendi,et al.  Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites , 1993 .

[5]  S. Forrest,et al.  Reliability and degradation of organic light emitting devices , 1994 .

[6]  A. Alivisatos,et al.  Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer , 1994, Nature.

[7]  A. Alivisatos,et al.  Symmetry of Annealed Wurtzite CdSe Nanocrystals: Assignment to the C3v Point Group , 1995 .

[8]  M. Bawendi,et al.  Electroluminescence from CdSe quantum‐dot/polymer composites , 1995 .

[9]  P. Guyot-Sionnest,et al.  Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals , 1996 .

[10]  A. Alivisatos,et al.  Improved efficiencies in light emitting diodes made with CdSe(CdS) core/shell type nanocrystals and a semiconducting polymer , 1997 .

[11]  M. Ratner,et al.  Molecular electronics : a 'chemistry for the 21st century' monograph , 1997 .

[12]  M. Bawendi,et al.  Electroluminescence from heterostructures of poly(phenylene vinylene) and inorganic CdSe nanocrystals , 1998 .

[13]  Y. Hamada,et al.  Red organic light-emitting diodes using an emitting assist dopant , 1999 .

[14]  W. R. Salaneck,et al.  Electroluminescence in conjugated polymers , 1999, Nature.

[15]  E. Keinan,et al.  Chemistry for the 21st Century , 2000 .

[16]  Shui-Tong Lee,et al.  Improvement of efficiency and colour purity of red-dopant organic light-emitting diodes by energy levels matching with the host materials , 2001 .

[17]  모리야마타카시,et al.  Metal coordination compound and electroluminescence device , 2002 .

[18]  V. Bulović,et al.  Electroluminescence from single monolayers of nanocrystals in molecular organic devices , 2002, Nature.

[19]  U. Banin,et al.  Efficient Near-Infrared Polymer Nanocrystal Light-Emitting Diodes , 2002, Science.

[20]  M. Bawendi,et al.  Reversible Charging of CdSe Nanocrystals in a Simple Solid‐State Device , 2002 .

[21]  V. Bulović,et al.  1.3 μm to 1.55 μm Tunable Electroluminescence from PbSe Quantum Dots Embedded within an Organic Device , 2003 .

[22]  A. ADoefaa,et al.  ? ? ? ? f ? ? ? ? ? , 2003 .

[23]  M. Bawendi,et al.  Selection of Quantum Dot Wavelengths for Biomedical Assays and Imaging , 2003, Molecular Imaging.

[24]  E. Sargent,et al.  Size-tunable infrared (1000–1600 nm) electroluminescence from PbS quantum-dot nanocrystals in a semiconducting polymer , 2003 .

[25]  G. Konstantatos,et al.  Exciton capture by nanocrystals in a polymer matrix , 2003 .

[26]  T. Mihaljevic,et al.  Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping , 2004, Nature Biotechnology.

[27]  E. Sargent,et al.  Efficient excitation transfer from polymer to nanocrystals , 2004 .

[28]  Darryl L. Smith,et al.  Energy-transfer pumping of semiconductor nanocrystals using an epitaxial quantum well , 2004, Nature.

[29]  M. Reufer,et al.  Near-infrared electroluminescence from HgTe nanocrystals. , 2004, Chemphyschem : a European journal of chemical physics and physical chemistry.

[30]  V. Bulović,et al.  Large‐Area Ordered Quantum‐Dot Monolayers via Phase Separation During Spin‐Casting , 2005 .

[31]  Igor L. Medintz,et al.  Quantum dot bioconjugates for imaging, labelling and sensing , 2005, Nature materials.

[32]  E. Sargent Infrared Quantum Dots , 2005 .

[33]  M. Petruska,et al.  Multicolor light-emitting diodes based on semiconductor nanocrystals encapsulated in GaN charge injection layers. , 2005, Nano letters.

[34]  G. Konstantatos,et al.  Efficient Infrared Electroluminescent Devices Using Solution‐Processed Colloidal Quantum Dots , 2005 .

[35]  E. Lifshitz,et al.  Optoelectronic properties of polymer-nanocrystal composites active at near-infrared wavelengths , 2005 .

[36]  E. Sargent,et al.  PbS quantum dot electroabsorption modulation across the extended communications band 1200-1700 nm , 2005 .

[37]  E. O'Connor,et al.  Near-infrared electroluminescent devices based on colloidal HgTe quantum dot arrays , 2005 .

[38]  V. Bulović,et al.  Color-saturated green-emitting QD-LEDs. , 2006, Angewandte Chemie.

[39]  Jiu-Haw Lee,et al.  6-N,N-diphenylaminobenzofuran-derived pyran containing fluorescent dyes: a new class of high-brightness red-light-emitting dopants for OLED. , 2006, Organic letters.

[40]  G. Gigli,et al.  Bright White‐Light‐Emitting Device from Ternary Nanocrystal Composites , 2006 .

[41]  A. Jen,et al.  Efficient CdSe/CdS quantum dot light-emitting diodes using a thermally polymerized hole transport layer. , 2006, Nano letters.

[42]  V. Bulović,et al.  NiO as an inorganic hole-transporting layer in quantum-dot light-emitting devices. , 2006, Nano letters.

[43]  M. Crawford,et al.  Nanocrystal-based light-emitting diodes utilizing high-efficiency nonradiative energy transfer for color conversion. , 2006, Nano letters.

[44]  Yongfang Li,et al.  Bright, multicoloured light-emitting diodes based on quantum dots , 2007 .

[45]  V. Bulović,et al.  Electroluminescence from a mixed red-green-blue colloidal quantum dot monolayer. , 2007, Nano letters.

[46]  A. Rogach,et al.  Infrared-emitting colloidal nanocrystals: synthesis, assembly, spectroscopy, and applications. , 2007, Small.

[47]  J. L. Zhao,et al.  Improved Performance from Multilayer Quantum Dot Light‐Emitting Diodes via Thermal Annealing of the Quantum Dot Layer , 2007 .

[48]  V. Bulović,et al.  Bias-induced photoluminescence quenching of single colloidal quantum dots embedded in organic semiconductors. , 2007, Nano letters.

[49]  R. Janssen,et al.  Red, green, and blue quantum dot LEDs with solution processable ZnO nanocrystal electron injection layers , 2008 .

[50]  V. Bulović,et al.  Electronic and excitonic processes in light-emitting devices based on organic materials and colloidal quantum dots , 2008 .

[51]  Darrick J. Williams,et al.  Utilizing the lability of lead selenide to produce heterostructured nanocrystals with bright, stable infrared emission. , 2008, Journal of the American Chemical Society.

[52]  G. Gigli,et al.  Hybrid Light‐Emitting Diodes from Microcontact‐Printing Double‐Transfer of Colloidal Semiconductor CdSe/ZnS Quantum Dots onto Organic Layers , 2008 .

[53]  T. Lutz,et al.  Highly efficient near-infrared hybrid organic-inorganic nanocrystal electroluminescence device , 2008 .

[54]  F. Wise,et al.  PbS quantum dot photoluminescence quenching induced by an applied bias , 2008, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[55]  M. Bawendi,et al.  Colloidal quantum--dot light-emitting diodes with metal-oxide charge transport layers , 2008 .

[56]  K. Walzer,et al.  Influence of charge balance and exciton distribution on efficiency and lifetime of phosphorescent organic light-emitting devices , 2008 .

[57]  V. Bulović,et al.  Contact printing of quantum dot light-emitting devices. , 2008, Nano letters.

[58]  R. Janssen,et al.  Electroluminescent Cu‐doped CdS Quantum Dots , 2009 .

[59]  J. Y. Han,et al.  High-performance crosslinked colloidal quantum-dot light-emitting diodes , 2009 .

[60]  K. Schanze,et al.  Efficient near-infrared polymer and organic light-emitting diodes based on electrophosphorescence from (tetraphenyltetranaphtho[2,3]porphyrin)platinum(II). , 2009, ACS applied materials & interfaces.

[61]  Jinju Zheng,et al.  Shell-dependent electroluminescence from colloidal CdSe quantum dots in multilayer light-emitting diodes , 2009 .

[62]  Manuela F. Frasco,et al.  Semiconductor Quantum Dots in Chemical Sensors and Biosensors , 2009, Sensors.

[63]  V. Bulović,et al.  Quantum dot light-emitting devices with electroluminescence tunable over the entire visible spectrum. , 2009, Nano letters.

[64]  Gang Qian,et al.  Simple and Efficient Near‐Infrared Organic Chromophores for Light‐Emitting Diodes with Single Electroluminescent Emission above 1000 nm , 2009 .

[65]  V. Bulović,et al.  Selection of metal oxide charge transport layers for colloidal quantum dot LEDs. , 2009, ACS nano.

[66]  V. Bulović,et al.  Tunable Infrared Emission From Printed Colloidal Quantum Dot/Polymer Composite Films on Flexible Substrates , 2010, Journal of Display Technology.

[67]  G. Jabbour,et al.  Inkjet Printed RGB Quantum Dot-Hybrid LED , 2010, Journal of Display Technology.

[68]  K. Leo,et al.  Quantification of energy loss mechanisms in organic light-emitting diodes , 2010 .

[69]  Electroluminescence of green CdSe/ZnS quantum dots enhanced by harvesting excitons from phosphorescent molecules , 2010 .

[70]  V. Bulović,et al.  Colloidal PbS quantum dot solar cells with high fill factor. , 2010, ACS nano.

[71]  Huaipeng Su,et al.  Quantum-Confined Stark Effect in Ensemble of Colloidal Semiconductor Quantum Dots , 2010 .

[72]  K. Choudhury,et al.  Efficient solution-processed hybrid polymer–nanocrystal near infrared light-emitting devices , 2010 .

[73]  V. Bulović,et al.  Nanoscale morphology revealed at the interface between colloidal quantum dots and organic semiconductor films. , 2010, Nano letters.

[74]  K. Char,et al.  Multicolored light-emitting diodes based on all-quantum-dot multilayer films using layer-by-layer assembly method. , 2010, Nano letters.

[75]  V. Klimov Nanocrystal quantum dots, second edition , 2010 .

[76]  V. Bulović,et al.  Colloidal quantum dot light-emitting devices , 2010, Nano reviews.

[77]  Rebecca J. Anthony,et al.  Hybrid silicon nanocrystal-organic light-emitting devices for infrared electroluminescence. , 2010, Nano letters.

[78]  P. Guyot-Sionnest,et al.  Hot Electron Extraction From Colloidal Quantum Dots , 2010 .

[79]  Zhuozhi Wang,et al.  Chlorinated Indium Tin Oxide Electrodes with High Work Function for Organic Device Compatibility , 2011, Science.

[80]  C. Galland,et al.  Two types of luminescence blinking revealed by spectroelectrochemistry of single quantum dots , 2011, Nature.

[81]  Eun Kyung Lee,et al.  Full-colour quantum dot displays fabricated by transfer printing , 2011 .

[82]  Rebecca J. Anthony,et al.  High-efficiency silicon nanocrystal light-emitting devices. , 2011, Nano letters.

[83]  P. Holloway,et al.  Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures , 2011 .

[84]  S. Coe‐Sullivan,et al.  12.2: Invited Paper: Quantum Dot Light Emitting Diodes for Near‐to‐eye and Direct View Display Applications , 2011 .

[85]  Xin Ma,et al.  High performance hybrid near-infrared LEDs using benzenedithiol cross-linked PbS colloidal nanocrystals , 2012 .

[86]  W. G. van der Wiel,et al.  Josephson supercurrent through a topological insulator surface state. , 2011, Nature materials.

[87]  R. H. Kim,et al.  High Performance AC Electroluminescence from Colloidal Quantum Dot Hybrids , 2012, Advanced materials.

[88]  D. Y. Yoon,et al.  Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure. , 2012, Nano letters.

[89]  F. Wise,et al.  Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control. , 2012, Nature nanotechnology.

[90]  V. Bulović,et al.  Emergence of colloidal quantum-dot light-emitting technologies , 2012, Nature Photonics.

[91]  V. Bulović,et al.  Origin of efficiency roll-off in colloidal quantum-dot light-emitting diodes. , 2013, Physical review letters.

[92]  K. Bourzac Quantum dots go on display , 2013, Nature.

[93]  Trisha L. Andrew,et al.  Effect of synthetic accessibility on the commercial viability of organic photovoltaics , 2013 .

[94]  Wenhao Liu,et al.  Quantum Dots for LED Downconversion in Display Applications , 2013 .

[95]  V. Bulović,et al.  High-efficiency quantum-dot light-emitting devices with enhanced charge injection , 2013, Nature Photonics.

[96]  V. Wood,et al.  Origins of Low Quantum Efficiencies in Quantum Dot LEDs , 2013 .