Zero-shot Learning with Deep Neural Networks for Object Recognition

[1]  Aaron C. Courville,et al.  Generative Adversarial Networks , 2022, 2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT).

[2]  C'eline Hudelot,et al.  AVAE: Adversarial Variational Auto Encoder , 2020, 2020 25th International Conference on Pattern Recognition (ICPR).

[3]  Michel Crucianu,et al.  Using Sentences as Semantic Representations in Large Scale Zero-Shot Learning , 2020, ECCV Workshops.

[4]  Adrian Popescu,et al.  Webly Supervised Semantic Embeddings for Large Scale Zero-Shot Learning , 2020, ACCV.

[5]  Yongdong Zhang,et al.  Domain-Aware Visual Bias Eliminating for Generalized Zero-Shot Learning , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[6]  Michael I. Jordan,et al.  AUTO-ENCODING VARIATIONAL BAYES , 2020 .

[7]  C'eline Hudelot,et al.  Controlling generative models with continuous factors of variations , 2020, ICLR.

[8]  Michel Crucianu,et al.  Modeling Inter and Intra-Class Relations in the Triplet Loss for Zero-Shot Learning , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[9]  Bernt Schiele,et al.  Semantic Projection Network for Zero- and Few-Label Semantic Segmentation , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[10]  Marc'Aurelio Ranzato,et al.  Task-Driven Modular Networks for Zero-Shot Compositional Learning , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[11]  P. Gallinari,et al.  Context-Aware Zero-Shot Learning for Object Recognition , 2019, ICML.

[12]  Tetsuya Takiguchi,et al.  On Zero-Shot Recognition of Generic Objects , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[13]  Bernt Schiele,et al.  F-VAEGAN-D2: A Feature Generating Framework for Any-Shot Learning , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[14]  Chunyan Miao,et al.  A Survey of Zero-Shot Learning , 2019, ACM Trans. Intell. Syst. Technol..

[15]  Wei-Lun Chao,et al.  Classifier and Exemplar Synthesis for Zero-Shot Learning , 2018, International Journal of Computer Vision.

[16]  Michel Crucianu,et al.  From Classical to Generalized Zero-Shot Learning: a Simple Adaptation Process , 2018, MMM.

[17]  Hao Wang,et al.  Rethinking Knowledge Graph Propagation for Zero-Shot Learning , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[18]  Rama Chellappa,et al.  Zero-Shot Object Detection , 2018, ECCV.

[19]  Abhinav Gupta,et al.  Zero-Shot Recognition via Semantic Embeddings and Knowledge Graphs , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[20]  Piyush Rai,et al.  Generalized Zero-Shot Learning via Synthesized Examples , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[21]  Wei Liu,et al.  Zero-Shot Visual Recognition Using Semantics-Preserving Adversarial Embedding Networks , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[22]  Bernt Schiele,et al.  Feature Generating Networks for Zero-Shot Learning , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[23]  Yu-Chiang Frank Wang,et al.  Multi-label Zero-Shot Learning with Structured Knowledge Graphs , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[24]  Shaogang Gong,et al.  Recent Advances in Zero-Shot Recognition: Toward Data-Efficient Understanding of Visual Content , 2017, IEEE Signal Processing Magazine.

[25]  Hema A. Murthy,et al.  A Generative Model for Zero Shot Learning Using Conditional Variational Autoencoders , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[26]  Jungong Han,et al.  Synthesizing Samples fro Zero-shot Learning , 2017 .

[27]  Piyush Rai,et al.  A Simple Exponential Family Framework for Zero-Shot Learning , 2017, ECML/PKDD.

[28]  Christoph H. Lampert,et al.  Zero-Shot Learning—A Comprehensive Evaluation of the Good, the Bad and the Ugly , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[29]  Shaogang Gong,et al.  Semantic Autoencoder for Zero-Shot Learning , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[30]  Aaron C. Courville,et al.  Improved Training of Wasserstein GANs , 2017, NIPS.

[31]  Bernt Schiele,et al.  Zero-Shot Learning — The Good, the Bad and the Ugly , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[32]  Léon Bottou,et al.  Towards Principled Methods for Training Generative Adversarial Networks , 2017, ICLR.

[33]  B. Schiele,et al.  Gaze Embeddings for Zero-Shot Image Classification , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[34]  Tao Xiang,et al.  Learning a Deep Embedding Model for Zero-Shot Learning , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[35]  Tomas Mikolov,et al.  Enriching Word Vectors with Subword Information , 2016, TACL.

[36]  Bernt Schiele,et al.  Learning Deep Representations of Fine-Grained Visual Descriptions , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[37]  Wei-Lun Chao,et al.  An Empirical Study and Analysis of Generalized Zero-Shot Learning for Object Recognition in the Wild , 2016, ECCV.

[38]  Wei-Lun Chao,et al.  Synthesized Classifiers for Zero-Shot Learning , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[39]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[40]  Honglak Lee,et al.  Learning Structured Output Representation using Deep Conditional Generative Models , 2015, NIPS.

[41]  Philip H. S. Torr,et al.  An embarrassingly simple approach to zero-shot learning , 2015, ICML.

[42]  Yuji Matsumoto,et al.  Ridge Regression, Hubness, and Zero-Shot Learning , 2015, ECML/PKDD.

[43]  Georgiana Dinu,et al.  Hubness and Pollution: Delving into Cross-Space Mapping for Zero-Shot Learning , 2015, ACL.

[44]  F. Perronnin,et al.  Label-Embedding for Image Classification , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[45]  Xin Li,et al.  Max-Margin Zero-Shot Learning for Multi-class Classification , 2015, AISTATS.

[46]  Simon Osindero,et al.  Conditional Generative Adversarial Nets , 2014, ArXiv.

[47]  Jeffrey Pennington,et al.  GloVe: Global Vectors for Word Representation , 2014, EMNLP.

[48]  Bernt Schiele,et al.  Evaluation of output embeddings for fine-grained image classification , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[49]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[50]  Michael S. Bernstein,et al.  ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.

[51]  Timothy M. Hospedales,et al.  Transductive Multi-label Zero-shot Learning , 2014, British Machine Vision Conference.

[52]  Cees Snoek,et al.  COSTA: Co-Occurrence Statistics for Zero-Shot Classification , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[53]  Samy Bengio,et al.  Zero-Shot Learning by Convex Combination of Semantic Embeddings , 2013, ICLR.

[54]  Marc'Aurelio Ranzato,et al.  DeViSE: A Deep Visual-Semantic Embedding Model , 2013, NIPS.

[55]  Jeffrey Dean,et al.  Distributed Representations of Words and Phrases and their Compositionality , 2013, NIPS.

[56]  Cordelia Schmid,et al.  Label-Embedding for Attribute-Based Classification , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[57]  Vanessa Murdock,et al.  Modeling locations with social media , 2013, Information Retrieval.

[58]  Andrew Y. Ng,et al.  Zero-Shot Learning Through Cross-Modal Transfer , 2013, NIPS.

[59]  Pietro Perona,et al.  The Caltech-UCSD Birds-200-2011 Dataset , 2011 .

[60]  Bernt Schiele,et al.  Evaluating knowledge transfer and zero-shot learning in a large-scale setting , 2011, CVPR 2011.

[61]  Adrian Popescu,et al.  Social media driven image retrieval , 2011, ICMR.

[62]  Alexandros Nanopoulos,et al.  Hubs in Space: Popular Nearest Neighbors in High-Dimensional Data , 2010, J. Mach. Learn. Res..

[63]  Geoffrey E. Hinton,et al.  Zero-shot Learning with Semantic Output Codes , 2009, NIPS.

[64]  Ali Farhadi,et al.  Describing objects by their attributes , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[65]  Christoph H. Lampert,et al.  Learning to detect unseen object classes by between-class attribute transfer , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[66]  Fei-Fei Li,et al.  ImageNet: A large-scale hierarchical image database , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[67]  Yoshua Bengio,et al.  Zero-data Learning of New Tasks , 2008, AAAI.

[68]  Thomas Hofmann,et al.  Large Margin Methods for Structured and Interdependent Output Variables , 2005, J. Mach. Learn. Res..

[69]  Thomas Hofmann,et al.  Support vector machine learning for interdependent and structured output spaces , 2004, ICML.

[70]  Koby Crammer,et al.  On the Algorithmic Implementation of Multiclass Kernel-based Vector Machines , 2002, J. Mach. Learn. Res..

[71]  George A. Miller,et al.  WordNet: A Lexical Database for English , 1995, HLT.

[72]  Richard H. Bartels,et al.  Algorithm 432 [C2]: Solution of the matrix equation AX + XB = C [F4] , 1972, Commun. ACM.

[73]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[74]  Régis Vaillant,et al.  on Pattern Analysis and Machine Intelligence , 2005 .

[75]  Geoffrey E. Hinton,et al.  Stochastic Neighbor Embedding , 2002, NIPS.

[76]  Jason Weston,et al.  Support vector machines for multi-class pattern recognition , 1999, ESANN.

[77]  Christoph H. Lampert,et al.  Attribute-Based Classification for Zero-Shot Visual Object Categorization , 2022 .