Beyond the Lennard-Jones model: a simple and accurate potential function probed by high resolution scattering data useful for molecular dynamics simulations.

Scattering data, measured for rare gas-rare gas systems under high angular and energy resolution conditions, have been used to probe the reliability of a recently proposed interaction potential function, which involves only one additional parameter with respect to the venerable Lennard-Jones (LJ) model and is hence called Improved Lennard-Jones (ILJ). The ILJ potential eliminates most of the inadequacies at short- and long-range of the LJ model. Further reliability tests have been performed by comparing calculated vibrational spacings with experimental values and calculated interaction energies at short-range with those obtained from the inversion of gaseous transport properties. The analysis, extended also to systems involving ions, suggests that the ILJ potential model can be used to estimate the behavior of unknown systems and can help to assess the different role of the leading interaction components. Moreover, due to its simple formulation, the physically reliable ILJ model appears to be particularly useful for molecular dynamics simulations of both neutral and ionic systems.

[1]  R. A. Aziz,et al.  Two- and three-body forces in the interaction of He atoms with Xe overlayers adsorbed on (0001) graphite , 1989 .

[2]  R. A. Aziz,et al.  The neon–argon potential revisited , 1988 .

[3]  Janet E. Jones On the determination of molecular fields. —II. From the equation of state of a gas , 1924 .

[4]  Edmond P. F. Lee,et al.  Spectroscopy of K+ x Rg and transport coefficients of K+ in Rg (Rg=He-Rn). , 2004, The Journal of chemical physics.

[5]  G. Maitland A simplified representation of intermolecular potential energy , 1973 .

[6]  R. Bernstein,et al.  The SPF–Dunham expansion for the potential well: A regression model for systematic analysis of differential elastic beam scattering cross sections , 1977 .

[7]  Fernando Pirani,et al.  Generalized correlations in terms of polarizability for van der Waals interaction potential parameter calculations , 1991 .

[8]  John W. Hepburn,et al.  A simple but reliable method for the prediction of intermolecular potentials , 1975 .

[9]  J. M. Parson,et al.  Intermolecular Potentials from Crossed Beam Differential Elastic Scattering Measurements. III. He+He and Ne+Ne , 1970 .

[10]  F. Pirani,et al.  Accurate Ne-heavier rare gas interatomic potentials , 1983 .

[11]  F. Pirani,et al.  A fast and accurate semiclassical calculation of the total elastic cross section in the glory energy range , 1982 .

[12]  E. Colbourn,et al.  The spectrum and ground state potential curve of Ar2 , 1976 .

[13]  R. A. Aziz,et al.  On the question of the well depth of the He–Ar interatomic potential , 1979 .

[14]  L. Wharton,et al.  Absolute Total Scattering Cross Sections for 7Li on He, Ne, Kr, and Xe , 1972 .

[15]  F Pirani,et al.  A molecular dynamics investigation of rare-gas solvated cation-benzene clusters using a new model potential. , 2005, The journal of physical chemistry. A.

[16]  G. Scoles,et al.  Intermolecular forces via hybrid Hartree–Fock–SCF plus damped dispersion (HFD) energy calculations. An improved spherical model , 1982 .

[17]  Yunjie Xu,et al.  Pure rotational spectra of the mixed rare gas van der Waals complexes Ne–Xe, Ar–Xe, and Kr–Xe , 1993 .

[18]  R. A. Aziz,et al.  On the Ne—Ne potential-energy curve and related properties , 1983 .

[19]  Cheuk-Yiu Ng,et al.  Improved potentials for Ne + Ar, Ne + Kr, and Ne + Xe , 1974 .

[20]  F. Pirani,et al.  Characterization of NeNe long range interaction by absolute total cross section measurement , 1978 .

[21]  E. F. Greene,et al.  PHYSICAL INTERPRETATION OF GLORY UNDULATIONS IN SCATTERING CROSS SECTIONS. , 1972 .

[22]  V. Aquilanti,et al.  Range and strength of interatomic forces: dispersion and induction contributions to the bonds of dications and of ionic molecules , 1996 .

[23]  E. F. Greene,et al.  Interpretation of glory undulations in scattering cross sections: Amplitudes , 1973 .

[24]  Gianfranco Vidali,et al.  Potentials of physical adsorption , 1991 .

[25]  F Pirani,et al.  From ar clustering dynamics to Ar solvation for Na+-benzene. , 2007, The journal of physical chemistry. A.

[26]  Bertrand Guillot,et al.  A reappraisal of what we have learnt during three decades of computer simulations on water , 2002 .

[27]  Fernando Pirani,et al.  Experimental benchmarks and phenomenology of interatomic forces: open-shell and electronic anisotropy effects , 2006 .

[28]  P. Casavecchia,et al.  Observation of high frequency quantum oscillations in elastic differential cross sections: A critical test of the Ne–Ar interaction potential , 1986 .

[29]  Giacinto Scoles,et al.  Intermolecular forces in simple systems , 1977 .

[30]  F. Pirani,et al.  The neon–argon interatomic potential , 1986 .

[31]  R. A. Aziz,et al.  The Ne-Ne interatomic potential revisited , 1989 .

[32]  J. V. D. Biesen,et al.  Experimental total collision cross sections in the glory region for noble gas systems , 1982 .

[33]  V. Aquilanti,et al.  The ground and lowest excited states of XeCl by atomic beam scattering , 1992 .

[34]  P. Herman,et al.  Vacuum ultraviolet laser spectroscopy. IV. Spectra of Kr2 and constants of the ground and excited states , 1986 .

[35]  Stefano Falcinelli,et al.  Interaction components in the hydrogen halide dications , 2007 .

[36]  Fernando Pirani,et al.  Glory-scattering measurement of water-noble-gas interactions: the birth of the hydrogen bond. , 2005, Angewandte Chemie.

[37]  P. Herman,et al.  Vacuum ultraviolet laser spectroscopy. V. Rovibronic spectra of Ar2 and constants of the ground and excited states , 1988 .

[38]  K. Yoshino,et al.  Vacuum ultraviolet absorption spectrum of the van der Waals molecule Xe2. I. Ground state vibrational structure, potential well depth, and shape , 1974 .

[39]  Piergiorgio Casavecchia,et al.  High‐resolution total differential cross sections for scattering of helium by O2, N2, and NO , 1986 .

[40]  R. A. Aziz,et al.  The Kr-Kr potential energy curve and related physical properties; the XC and HFD-B potential models , 1989 .

[41]  J. Michael Finlan,et al.  New alternative to the Dunham potential for diatomic molecules , 1973 .

[42]  R. Bernstein,et al.  The Simons-Parr-Finlan modified Dunham expansion: a generalized potential model for the analysis of differential elastic molecular beam scattering cross sections , 1974 .

[43]  D. Neumark,et al.  Zero electron kinetic energy spectroscopy of the ArCl− anion , 1999 .

[44]  Fernando Pirani,et al.  Regularities in van der Waals forces: correlation between the potential parameters and polarizability , 1985 .

[45]  F. Pirani,et al.  A bond-bond description of the intermolecular interaction energy: the case of weakly bound N(2)-H(2) and N(2)-N(2) complexes. , 2008, Physical chemistry chemical physics : PCCP.

[46]  H. H. Chen,et al.  An accurate intermolecular potential for argon , 1977 .

[47]  Fernando Pirani,et al.  Molecular-beam study of the water-helium system: features of the isotropic component of the intermolecular interaction and a critical test for the available potential-energy surfaces. , 2005, The Journal of chemical physics.

[48]  K. Yoshino,et al.  Absorption Spectra of Ne2 and HeNe Molecules in the Vacuum‐uv Region , 1972 .

[49]  M. Klein,et al.  Neon interatomic potentials from scattering data and crystalline properties , 1973 .

[50]  Fernando Pirani,et al.  Atom–bond pairwise additive representation for intermolecular potential energy surfaces , 2004 .

[51]  W. Wakeham,et al.  Direct determination of intermolecular potentials from gaseous transport coefficients alone: Part II. Application to unlike monatomic interactions , 1978 .

[52]  Fernando Pirani,et al.  Generalization to ion—neutral systems of the polarizability correlations for interaction potential parameters , 1991 .

[53]  V. Aquilanti,et al.  Molecular Beam Scattering Experiments on Benzene−Rare Gas Systems: Probing the Potential Energy Surfaces for the C6H6−He, −Ne, and −Ar Dimers† , 2002 .

[54]  J. Toennies,et al.  Modelling of repulsive potentials from charge density distributions: A new site-site model applied to inert gas atoms with the diatomic molecules H2, N2, O2 , 1988 .

[55]  P. Certain,et al.  Bounds to two- and three-body long-range interaction coefficients for S-state atoms , 1985 .

[56]  Natalie M. Cann,et al.  Absolute scale determination for photoabsorption spectra and the calculation of molecular properties using dipole sum-rules , 1997 .

[57]  H. Böhm,et al.  Interaction potentials for alkali ion–rare gas and halogen ion–rare gas systems , 1988 .

[58]  M. Tomassini,et al.  The interatomic potential of neon from scattering, gaseous and solid state data , 1979 .

[59]  R. A. Aziz,et al.  A highly accurate interatomic potential for argon , 1993 .

[60]  K. Tang,et al.  An improved simple model for the van der Waals potential based on universal damping functions for the dispersion coefficients , 1984 .

[61]  J. F. Ogilvie,et al.  Potential-energy functions of diatomic molecules of the noble gases , 1993 .

[62]  U. Buck Inversion of molecular scattering data , 1974 .

[63]  D. E. Freeman,et al.  Vacuum ultraviolet absorption spectra of the van der Waals molecules Kr2 and ArKr , 1973 .

[64]  F. Pirani,et al.  An accurate Ne—Ar interatomic potential , 1982 .

[65]  P. Wormer,et al.  Ab initio dispersion coefficients for interactions involving rare-gas atoms , 1992 .

[66]  J. F. Ogilvie,et al.  Potential-energy functions of diatomic molecules of the noble gases I. Like nuclear species , 1992 .

[67]  G. Maitland,et al.  The pair potential energy function for krypton , 1974 .

[68]  K. Tang,et al.  The van der Waals potentials between all the rare gas atoms from He to Rn , 2003 .

[69]  R. A. Aziz,et al.  Simple accurate potentials for Ne–Kr and Ne–Xe , 1989 .

[70]  Ashok Kumar,et al.  Pseudo-spectral dipole oscillator strengths and dipole-dipole and triple-dipole dispersion energy coefficients for HF, HCl, HBr, He, Ne, Ar, Kr and Xe , 1985 .

[71]  R. Bernstein,et al.  Potential-well characteristics from the energy dependence of the glory extrema in total elastic scattering cross sections. , 1967 .

[72]  S. Patil Interionic potentials in alkali halides , 1987 .

[73]  G. Scoles Two-Body, Spherical, Atom-Atom, and Atom-Molecule Interaction Energies , 1980 .

[74]  M. Keil,et al.  Interatomic potentials for HeAr, HeKr, and HeXe from multiproperty fits , 1988 .

[75]  Fernando Pirani,et al.  On the possibility of using model potentials for collision integral calculations of interest for planetary atmospheres , 2007 .