An Exact Bounded Perfectly Matched Layer for Time-Harmonic Scattering Problems

The aim of this paper is to introduce an “exact” bounded perfectly matched layer (PML) for the scalar Helmholtz equation. This PML is based on using a nonintegrable absorbing function. “Exactness” must be understood in the sense that this technique allows exact recovering of the solution to time-harmonic scattering problems in unbounded domains. In spite of the singularity of the absorbing function, the coupled fluid/PML problem is well posed when the solution is sought in an adequate weighted Sobolev space. The resulting weak formulation can be numerically solved by using standard finite elements. The high accuracy of this approach is numerically demonstrated as compared with a classical PML technique.

[1]  Matti Lassas,et al.  Analysis of the PML equations in general convex geometry , 2001, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[2]  A. Bayliss,et al.  Radiation boundary conditions for wave-like equations , 1980 .

[3]  J. Nédélec Acoustic and Electromagnetic Equations : Integral Representations for Harmonic Problems , 2001 .

[4]  Chrysoula Tsogka,et al.  Application of the PML absorbing layer model to the linear elastodynamic problem in anisotropic hete , 1998 .

[5]  F. Hu A Stable, perfectly matched layer for linearized Euler equations in unslit physical variables , 2001 .

[6]  Anne-Sophie Bonnet-Ben Dhia,et al.  Perfectly Matched Layers for the Convected Helmholtz Equation , 2004, SIAM J. Numer. Anal..

[7]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[8]  Matti Lassas,et al.  On the existence and convergence of the solution of PML equations , 1998, Computing.

[9]  E. Turkel,et al.  ANALYTICAL AND NUMERICAL STUDIES OF A FINITE ELEMENT PML FOR THE HELMHOLTZ EQUATION , 2000 .

[10]  Alfredo Bermúdez,et al.  An optimal perfectly matched layer with unbounded absorbing function for time-harmonic acoustic scattering problems , 2007, J. Comput. Phys..

[11]  A. Chopra,et al.  Perfectly matched layers for time-harmonic elastodynamics of unbounded domains : Theory and finite-element implementation , 2003 .

[12]  E. Turkel,et al.  Absorbing PML boundary layers for wave-like equations , 1998 .

[13]  Peter Monk,et al.  The Perfectly Matched Layer in Curvilinear Coordinates , 1998, SIAM J. Sci. Comput..

[14]  J. Nédélec Acoustic and electromagnetic equations , 2001 .

[15]  L. Milne‐Thomson A Treatise on the Theory of Bessel Functions , 1945, Nature.

[16]  Qing Huo Liu,et al.  The application of the perfectly matched layer in numerical modeling of wave propagation in poroelastic media , 2001 .

[17]  Matti Lassas,et al.  Complex Riemannian metric and absorbing boundary conditions , 2001 .

[18]  A. Majda,et al.  Absorbing boundary conditions for the numerical simulation of waves , 1977 .

[19]  W. McLean Strongly Elliptic Systems and Boundary Integral Equations , 2000 .

[20]  Calvin H. Wilcox,et al.  Scattering Theory for the d'Alembert Equation in Exterior Domains , 1975 .

[21]  Weng Cho Chew,et al.  A 3D perfectly matched medium from modified maxwell's equations with stretched coordinates , 1994 .

[22]  Patrick Joly,et al.  Mathematical Modelling and Numerical Analysis on the Analysis of B ´ Erenger's Perfectly Matched Layers for Maxwell's Equations , 2022 .

[23]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[24]  R. Kress,et al.  Inverse Acoustic and Electromagnetic Scattering Theory , 1992 .

[25]  Zhiming Chen,et al.  An Adaptive Perfectly Matched Layer Technique for Time-harmonic Scattering Problems , 2005, SIAM J. Numer. Anal..

[26]  A. Kufner,et al.  Some applications of weighted Sobolev spaces , 1987 .

[27]  Mohamed Masmoudi,et al.  Numerical solution for exterior problems , 1987 .

[28]  D. Gottlieb,et al.  Regular Article: Well-posed Perfectly Matched Layers for Advective Acoustics , 1999 .

[29]  Thomas L. Geers,et al.  Evaluation of the Perfectly Matched Layer for Computational Acoustics , 1998 .

[30]  D. Givoli Numerical Methods for Problems in Infinite Domains , 1992 .

[31]  Ivo Babuška,et al.  A comparison of approximate boundary conditions and infinite element methods for exterior Helmholtz problems , 1998 .

[32]  J. Lions,et al.  Problèmes aux limites non homogènes et applications , 1968 .

[33]  Jacques-Louis Lions,et al.  Well-posed absorbing layer for hyperbolic problems , 2002, Numerische Mathematik.

[34]  Leszek F. Demkowicz,et al.  Analysis of a coupled finite-infinite element method for exterior Helmholtz problems , 2001, Numerische Mathematik.

[35]  Frank Schmidt,et al.  Solving Time-Harmonic Scattering Problems Based on the Pole Condition II: Convergence of the PML Method , 2003, SIAM J. Math. Anal..

[36]  J. Bérenger Three-Dimensional Perfectly Matched Layer for the Absorption of Electromagnetic Waves , 1996 .

[37]  J. Bérenger Perfectly matched layer for the FDTD solution of wave-structure interaction problems , 1996 .

[38]  Murthy N. Guddati,et al.  On Optimal Finite-Difference Approximation of PML , 2003, SIAM J. Numer. Anal..

[39]  Beny Neta,et al.  A Perfectly Matched Layer Approach to the Linearized Shallow Water Equations Models , 2004, Monthly Weather Review.

[40]  P. Monk,et al.  Optimizing the Perfectly Matched Layer , 1998 .