A Filter Active-Set Algorithm for Ball/Sphere Constrained Optimization Problem

In this paper, we propose a filter active-set algorithm for the minimization problem over a product of multiple ball/sphere constraints. By making effective use of the special structure of the ball/sphere constraints, a new limited memory BFGS (L-BFGS) scheme is presented. The new L-BFGS implementation takes advantage of the sparse structure of the Jacobian of the constraints and generates curvature information of the minimization problem. At each iteration, only two or three reduced linear systems are required to solve for the search direction. The filter technique combined with the backtracking line search strategy ensures the global convergence, and the local superlinear convergence can also be established under mild conditions. The algorithm is applied to two specific applications, the nearest correlation matrix with factor structure and the maximal correlation problem. Our numerical experiments indicate that the proposed algorithm is competitive with some recently custom-designed methods for each ind...

[1]  Claudia A. Sagastizábal,et al.  A bundle-filter method for nonsmooth convex constrained optimization , 2008, Math. Program..

[2]  Sven Leyffer,et al.  On the Global Convergence of a Filter--SQP Algorithm , 2002, SIAM J. Optim..

[3]  Bo Wang,et al.  Global and local convergence of a nonmonotone SQP method for constrained nonlinear optimization , 2014, Comput. Optim. Appl..

[4]  J. Jian,et al.  A superlinearly convergent strongly sub-feasible SSLE-type algorithm with working set for nonlinearly constrained optimization , 2009 .

[5]  Bo Jiang,et al.  A framework of constraint preserving update schemes for optimization on Stiefel manifold , 2013, Math. Program..

[6]  Naihua Xiu,et al.  Constrained Best Euclidean Distance Embedding on a Sphere: A Matrix Optimization Approach , 2015, SIAM J. Optim..

[7]  C. Lemaréchal,et al.  The watchdog technique for forcing convergence in algorithms for constrained optimization , 1982 .

[8]  Hao Wang,et al.  A Sequential Quadratic Optimization Algorithm with Rapid Infeasibility Detection , 2014, SIAM J. Optim..

[9]  Guoping He,et al.  Sequential systems of linear equations method for general constrained optimization without strict complementarity , 2005 .

[10]  E. Panier,et al.  A QP-Free, globally convergent, locally superlinearly convergent algorithm for inequality constrained optimization , 1988 .

[11]  Nicholas I. M. Gould,et al.  A Second Derivative SQP Method: Local Convergence and Practical Issues , 2010, SIAM J. Optim..

[12]  Lorenz T. Biegler,et al.  Line Search Filter Methods for Nonlinear Programming: Local Convergence , 2005, SIAM J. Optim..

[14]  Defeng Sun,et al.  A Quadratically Convergent Newton Method for Computing the Nearest Correlation Matrix , 2006, SIAM J. Matrix Anal. Appl..

[15]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..

[16]  Clóvis C. Gonzaga,et al.  Global Convergence of Filter Methods for Nonlinear Programming , 2008, SIAM J. Optim..

[17]  C. Alexander,et al.  Common correlation and calibrating the lognormal forward rate model , 2003 .

[18]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[19]  Nicholas I. M. Gould,et al.  A Second Derivative SQP Method: Global Convergence , 2010, SIAM J. Optim..

[20]  Ya-Xiang Yuan,et al.  A Sequential Quadratic Programming Method Without A Penalty Function or a Filter for Nonlinear Equality Constrained Optimization , 2011, SIAM J. Optim..

[21]  R N Mantegna,et al.  Spectral density of the correlation matrix of factor models: a random matrix theory approach. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  Guoping He,et al.  An algorithm of sequential systems of linear equations for nonlinear optimization problems with arbitrary initial point , 1997 .

[23]  Lei-Hong Zhang,et al.  ON A MULTIVARIATE EIGENVALUE PROBLEM: II. GLOBAL SOLUTIONS AND THE GAUSS-SEIDEL METHOD , 2008 .

[24]  Nicholas I. M. Gould,et al.  Global Convergence of a Trust-Region SQP-Filter Algorithm for General Nonlinear Programming , 2002, SIAM J. Optim..

[25]  Naihua Xiu,et al.  Block relaxation and majorization methods for the nearest correlation matrix with factor structure , 2011, Comput. Optim. Appl..

[26]  Paul Glasserman,et al.  Correlation expansions for CDO pricing , 2007 .

[27]  Lorenz T. Biegler,et al.  Line Search Filter Methods for Nonlinear Programming: Motivation and Global Convergence , 2005, SIAM J. Optim..

[28]  Nicholas I. M. Gould,et al.  Trust Region Methods , 2000, MOS-SIAM Series on Optimization.

[29]  Stefan Ulbrich,et al.  A globally convergent primal-dual interior-point filter method for nonlinear programming , 2004, Math. Program..

[30]  Yongli Wang,et al.  A Feasible Active Set QP-Free Method for Nonlinear Programming , 2006, SIAM J. Optim..

[31]  R. Fletcher,et al.  A nonmonotone filter method for nonlinear optimization , 2012, Comput. Optim. Appl..

[32]  Sven Leyffer,et al.  Nonlinear programming without a penalty function , 2002, Math. Program..

[33]  Liqun Qi,et al.  A New QP-Free, Globally Convergent, Locally Superlinearly Convergent Algorithm For Inequality Constrained Optimization , 2000, SIAM J. Optim..

[34]  Michael A. Saunders,et al.  SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2002, SIAM J. Optim..

[35]  Nicholas J. Higham,et al.  Computing a Nearest Correlation Matrix with Factor Structure , 2010, SIAM J. Matrix Anal. Appl..

[36]  Francisco Facchinei,et al.  On the Accurate Identification of Active Constraints , 1998, SIAM J. Optim..

[37]  Dong-Hui Li,et al.  A Feasible Sequential Linear Equation Method for Inequality Constrained Optimization , 2002, SIAM J. Optim..

[38]  Ya-Xiang Yuan,et al.  Optimization theory and methods , 2006 .

[39]  Moody T. Chu,et al.  On a Multivariate Eigenvalue Problem, Part I: Algebraic Theory and a Power Method , 1993, SIAM J. Sci. Comput..

[40]  Stephen J. Wright,et al.  Active Set Identification in Nonlinear Programming , 2006, SIAM J. Optim..

[41]  Chungen Shen,et al.  An infeasible Ssle Filter Algorithm for General Constrained Optimization without Strict complementarity , 2011, Asia Pac. J. Oper. Res..

[42]  Moody T. Chu,et al.  Computing absolute maximum correlation , 2012 .

[43]  Lei-Hong Zhang Riemannian Trust-Region Method for the Maximal Correlation Problem , 2012 .

[44]  William W. Hager,et al.  Stability in the presence of degeneracy and error estimation , 1999, Math. Program..

[45]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[46]  Jorge Nocedal,et al.  On the limited memory BFGS method for large scale optimization , 1989, Math. Program..

[47]  M. Crouhy,et al.  A comparative analysis of current credit risk models , 2000 .

[48]  M. Chu,et al.  On a Multivariate Eigenvalue Problem � I Algebraic Theory and a Power Method , 2004 .