New tools and data for improving structures, using all-atom contacts.

[1]  F. Young Biochemistry , 1955, The Indian Medical Gazette.

[2]  B. Matthews The γ Turn. Evidence for a New Folded Conformation in Proteins , 1972 .

[3]  M. L. Connolly Solvent-accessible surfaces of proteins and nucleic acids. , 1983, Science.

[4]  J. Ponder,et al.  Tertiary templates for proteins. Use of packing criteria in the enumeration of allowed sequences for different structural classes. , 1987, Journal of molecular biology.

[5]  C. Bugg,et al.  Structure of ubiquitin refined at 1.8 A resolution. , 1987, Journal of molecular biology.

[6]  A. Wlodawer,et al.  Structure of phosphate-free ribonuclease A refined at 1.26 A. , 1988, Biochemistry.

[7]  J Moult,et al.  Analysis of the steric strain in the polypeptide backbone of protein molecules , 1991, Proteins.

[8]  R. Huber,et al.  Accurate Bond and Angle Parameters for X-ray Protein Structure Refinement , 1991 .

[9]  J. Zou,et al.  Improved methods for building protein models in electron density maps and the location of errors in these models. , 1991, Acta crystallographica. Section A, Foundations of crystallography.

[10]  R. Lavery,et al.  A new approach to the rapid determination of protein side chain conformations. , 1991, Journal of biomolecular structure & dynamics.

[11]  J. Thornton,et al.  Stereochemical quality of protein structure coordinates , 1992, Proteins.

[12]  M. Sullivan,et al.  Three-dimensional structure of a ubiquitin-conjugating enzyme (E2). , 1993, The Journal of biological chemistry.

[13]  A. Brunger Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. , 1992 .

[14]  J. Thornton,et al.  PROCHECK: a program to check the stereochemical quality of protein structures , 1993 .

[15]  D. McRee Practical Protein Crystallography , 1993 .

[16]  P. Argos,et al.  Rotamers: to be or not to be? An analysis of amino acid side-chain conformations in globular proteins. , 1993, Journal of molecular biology.

[17]  F. Quiocho,et al.  Dominant role of local dipoles in stabilizing uncompensated charges on a sulfate sequestered in a periplasmic active transport protein , 1993, Protein science : a publication of the Protein Society.

[18]  K. Harata X-ray structure of a monoclinic form of hen egg-white lysozyme crystallized at 313 K. Comparison of two independent molecules. , 1994, Acta crystallographica. Section D, Biological crystallography.

[19]  N. Kunishima,et al.  Crystal Structures of Cyanide- and Triiodide-bound Forms of Arthromyces ramosus Peroxidase at Different pH Values , 1995, The Journal of Biological Chemistry.

[20]  A. Fisher,et al.  The 1.5-Å Resolution Crystal Structure of Bacterial Luciferase in Low Salt Conditions* , 1996, The Journal of Biological Chemistry.

[21]  G J Kleywegt,et al.  Phi/psi-chology: Ramachandran revisited. , 1996, Structure.

[22]  P. Karplus Experimentally observed conformation‐dependent geometry and hidden strain in proteins , 1996, Protein science : a publication of the Protein Society.

[23]  W R Gray,et al.  Three-dimensional structure of the alpha-conotoxin GI at 1.2 A resolution. , 1996, Biochemistry.

[24]  K. Gunasekaran,et al.  Disallowed Ramachandran conformations of amino acid residues in protein structures. , 1996, Journal of molecular biology.

[25]  I Lasters,et al.  All in one: a highly detailed rotamer library improves both accuracy and speed in the modelling of sidechains by dead-end elimination. , 1997, Folding & design.

[26]  Roland L. Dunbrack,et al.  Bayesian statistical analysis of protein side‐chain rotamer preferences , 1997, Protein science : a publication of the Protein Society.

[27]  M. Saraste,et al.  Structural comparisons of calponin homology domains: implications for actin binding. , 1998, Structure.

[28]  D E McRee,et al.  XtalView/Xfit--A versatile program for manipulating atomic coordinates and electron density. , 1999, Journal of structural biology.

[29]  Merkel,et al.  Atomic Resolution Structures of the Core Domain of Avian Sarcoma Virus Integrase and Its D64N Mutant. , 1999, Biochemistry.

[30]  D C Richardson,et al.  Asparagine and glutamine rotamers: B-factor cutoff and correction of amide flips yield distinct clustering. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[31]  M. Zalis,et al.  Visualizing and quantifying molecular goodness-of-fit: small-probe contact dots with explicit hydrogen atoms. , 1999, Journal of molecular biology.

[32]  J. Richardson,et al.  Asparagine and glutamine: using hydrogen atom contacts in the choice of side-chain amide orientation. , 1999, Journal of molecular biology.

[33]  V Lamzin,et al.  Accurate protein crystallography at ultra-high resolution: valence electron distribution in crambin. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[34]  J. Richardson,et al.  The penultimate rotamer library , 2000, Proteins.

[35]  D. Richardson,et al.  Exploring steric constraints on protein mutations using MAGE/PROBE , 2000, Protein science : a publication of the Protein Society.

[36]  C. Carter,et al.  High-resolution experimental phases for tryptophanyl-tRNA synthetase (TrpRS) complexed with tryptophanyl-5'AMP. , 2001, Acta crystallographica. Section D, Biological crystallography.

[37]  T. Steitz,et al.  The kink‐turn: a new RNA secondary structure motif , 2001, The EMBO journal.

[38]  K. Wilson,et al.  A quick solution: ab initio structure determination of a 19 kDa metalloproteinase using ACORN. , 2001, Acta crystallographica. Section D, Biological crystallography.

[39]  Eddy Arnold,et al.  Crystallography of biological macromolecules , 2001 .

[40]  S. Hovmöller,et al.  Conformations of amino acids in proteins. , 2002, Acta crystallographica. Section D, Biological crystallography.