Chemical strengthening of lithium aluminosilicate glass-ceramic with different crystallinity

[1]  Wei Wang,et al.  The Crystallization and Fracture Toughness of Transparent Glass-ceramics with Various Al2O3 Additions for Mobile Devices , 2022, Journal of Wuhan University of Technology-Mater. Sci. Ed..

[2]  Chao Liu,et al.  Microstructure and ion-exchange properties of glass-ceramics containing ZnAl2O4 and β-quartz solid solution nanocrystals , 2021 .

[3]  Chao Liu,et al.  Effect of ZnAl2O4 crystallization on ion-exchange properties in aluminosilicate glass , 2021 .

[4]  Charlene M. Smith,et al.  Influence of composition and microstructure on transparency and diffusivity in ion‐exchangeable spinel glass‐ceramics , 2020 .

[5]  Xiaoyun Li,et al.  Effect of ZrO2 crystallization on ion exchange properties in aluminosilicate glass , 2020 .

[6]  V. Kiisk,et al.  Measurement of stress build-up of ion-exchange strengthened lithium aluminosilicate glass. , 2019, Journal of the American Ceramic Society. American Ceramic Society.

[7]  X. Li,et al.  Strong time-dependence for strengthening a lithium disilicate parent glass and the corresponding glass-ceramic by Li+/Na+ exchange. , 2019, Journal of the mechanical behavior of biomedical materials.

[8]  Jae-Yeol Kim,et al.  Enhancing cover glass fracture resistance for hand-held devices with PEALD-based Al2O3 coating , 2019, Ceramics International.

[9]  P. Heitjans,et al.  Glass in Two Forms: Heterogeneous Electrical Relaxation in Nanoglassy Petalite , 2019, The Journal of Physical Chemistry C.

[10]  Chengtie Wu,et al.  Surface strengthening of lithium disilicate glass-ceramic by ion-exchange using Rb, Cs nitrates , 2018, Ceramics International.

[11]  Zhiwei Luo,et al.  Crystallization, structure and characterization of MgO-Al2O3-SiO2-P2O5 transparent glass-ceramics with high crystallinity , 2018 .

[12]  Lingchao Lu,et al.  Rietveld Quantitative Analysis of Amorphous Phase in Slag by Internal Standard Method , 2018, 2018 10th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA).

[13]  S. Inaba,et al.  Non-destructive stress measurement in double ion-exchanged glass using optical guided-waves and scattered light , 2017 .

[14]  Morten Mattrup Smedskjær,et al.  Ion exchange strengthening and thermal expansion of glasses: Common origin and critical role of network connectivity , 2017 .

[15]  G. Beall,et al.  Ion-Exchange in Glass-Ceramics , 2016, Frontiers in Materials.

[16]  Zhiwei Luo,et al.  Preparation and properties of transparent cordierite-based glass-ceramics with high crystallinity , 2015 .

[17]  J. Rysz,et al.  Glass–ceramics of LAS (Li2O–Al2O3–SiO2) system enhanced by ion-exchange in KNO3 salt bath , 2015 .

[18]  M. Ma̧czka,et al.  Lithium silicate, LiAlSi4O10 (petalite)—a novel monoclinic SRS-active crystal , 2015 .

[19]  Hui Yang,et al.  Crystallization and microstructure of CaO-MgO-Al 2 O 3 -SiO 2 glass-ceramics containing complex nucleation agents , 2014 .

[20]  M. Ła̧czka,et al.  Thermal and spectroscopic characterization of glasses and glass–ceramics of Li2O–Al2O3–SiO2 (LAS) system , 2014 .

[21]  C. L. Losq,et al.  The role of Al3+ on rheology and structural changes in sodium silicate and aluminosilicate glasses and melts , 2014 .

[22]  H. Eichler,et al.  Structural modifications of binary lithium silicate glasses upon femtosecond laser pulse irradiation probed by micro-Raman spectroscopy , 2013 .

[23]  M. Shakeri Effect of Y2O3 on the crystallization kinetics of TiO2 nucleated LAS glass for the production of nanocrystalline transparent glass ceramics , 2013, International Journal of Minerals, Metallurgy, and Materials.

[24]  Yue Yan,et al.  Different K+–Na+ inter-diffusion kinetics between the air side and tin side of an ion-exchanged float aluminosilicate glass , 2013 .

[25]  S. G. Singh,et al.  Solid-state synthesis and heat capacity measurements of ceramic compounds LiAlSiO4, LiAlSi2O6, LiAlSi3O8, and LiAlSi4O10 , 2013, Journal of Thermal Analysis and Calorimetry.

[26]  J. Schreuer,et al.  Structure–property relations and thermodynamic properties of monoclinic petalite, LiAlSi4O10 , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[27]  Jianfeng Huang,et al.  Foundation of the Standard Curve Database for Quantitative Analysis by Internal Standard Method Based on XRD , 2010 .

[28]  Yue Gu,et al.  Application of DSC Technique in Study of Glass Ceramic , 2010 .

[29]  Edgar Dutra Zanotto A bright future for glass-ceramics , 2010 .

[30]  Rene Gy,et al.  Ion exchange for glass strengthening , 2008 .

[31]  Xiaoxiao Huang,et al.  Effects of P2O5 and heat treatment on crystallization and microstructure in lithium disilicate glass ceramics , 2008 .

[32]  S. Muqthiar Ali,et al.  Diffusion behavior of transition metals in field-assisted ion-exchanged glasses , 2006 .

[33]  C. Hall,et al.  Raman investigation of the structural changes during alteration of historic glasses by organic pollutants , 2006 .

[34]  Christopher Hall,et al.  The use of Raman spectrometry to predict the stability of historic glasses , 2006 .

[35]  K. Liang,et al.  Crystallization and Mechanical Properties of Spodumene-Diopside Glass Ceramics , 2004 .

[36]  H. Mizoguchi,et al.  High pressure densification of lithium silicate glasses , 2000 .

[37]  I. Pegg,et al.  Structural characterization of high-zirconia borosilicate glasses using Raman spectroscopy , 2000 .

[38]  D. Tagantsev Decrystallization of glass-ceramics under ion exchange diffusion , 1999 .

[39]  F. L. Galeener,et al.  Raman studies of Al coordination in silica-rich sodium aluminosilicate glasses and some related minerals , 1984 .

[40]  P. Černý,et al.  Crystal chemistry and stability of petalite , 1983 .

[41]  H. Effenberger Petalit, LiAlSi4O10: Verfeinerung der Kristallstruktur, Diskussion der Raumgruppe und Infrarot-Messung , 1980 .

[42]  G. Beall,et al.  Crystallization and Chemical Strengthening of Stuffed β‐Quartz Glass‐Ceramics , 1967 .

[43]  B. R. Karstetter,et al.  Chemical Strengthening of Glass‐Ceramics in the System Li2O‐Al2O3‐SiO2 , 1967 .