The meccano method for simultaneous volume parametrization and mesh generation of complex solids
暂无分享,去创建一个
Rafael Montenegro | José María Escobar | Eduardo Rodríguez | Gustavo Montero | J. M. Cascón | J. M. Escobar | E. Rodríguez | R. Montenegro | G. Montero
[1] Graham F. Carey,et al. Computational grids : generation, adaptation, and solution strategies , 1997 .
[2] M. Floater. Mean value coordinates , 2003, Computer Aided Geometric Design.
[3] Rafael Montenegro,et al. A New MeccanoTechnique for Adaptive 3-D Triangulations , 2007, IMR.
[4] H. Si,et al. Adaptive tetrahedral mesh generation by constrained Delaunay refinement , 2008 .
[5] Rafael Montenegro,et al. Implementation in ALBERTA of an Automatic Tetrahedral Mesh Generator , 2006, IMR.
[6] L. Freitag,et al. Local optimization-based simplicial mesh untangling and improvement. , 2000 .
[7] P. Knupp. Achieving finite element mesh quality via optimization of the Jacobian matrix norm and associated quantities. Part II—A framework for volume mesh optimization and the condition number of the Jacobian matrix , 2000 .
[8] Hong Qin,et al. Harmonic volumetric mapping for solid modeling applications , 2007, Symposium on Solid and Physical Modeling.
[9] J. M. Escobar,et al. An algebraic method for smoothing surface triangulations on a local parametric space , 2006 .
[10] Michael S. Floater,et al. Mean value coordinates , 2003, Comput. Aided Geom. Des..
[11] Michael S. Floater,et al. One-to-one piecewise linear mappings over triangulations , 2003, Math. Comput..
[12] Ángel Plaza,et al. Efficient refinement/derefinement algorithm of nested meshes to solve evolution problems , 1994 .
[13] Kunibert G. Siebert,et al. Design of Adaptive Finite Element Software - The Finite Element Toolbox ALBERTA , 2005, Lecture Notes in Computational Science and Engineering.
[14] J. M. Cascón,et al. An automatic strategy for adaptive tetrahedral mesh generation , 2009 .
[15] Charlie C. L. Wang,et al. Automatic PolyCube-Maps , 2008, GMP.
[16] Patrick M. Knupp,et al. Algebraic Mesh Quality Metrics , 2001, SIAM J. Sci. Comput..
[17] Joachim Schöberl,et al. NETGEN An advancing front 2D/3D-mesh generator based on abstract rules , 1997 .
[18] Hong Qin,et al. Polycube splines , 2008, Comput. Aided Des..
[19] J. M. González-Yuste,et al. Simultaneous untangling and smoothing of tetrahedral meshes , 2003 .
[20] Paolo Cignoni,et al. PolyCube-Maps , 2004, SIGGRAPH 2004.
[21] Igor Kossaczký. A recursive approach to local mesh refinement in two and three dimensions , 1994 .
[22] L. Freitag,et al. Tetrahedral mesh improvement via optimization of the element condition number , 2002 .
[23] Michael S. Floater,et al. Parametrization and smooth approximation of surface triangulations , 1997, Comput. Aided Geom. Des..
[24] Victor M. Calo,et al. Isogeometric Analysis: Toward Unification of Computer Aided Design and Finite Element Analysis , 2008 .
[25] Thomas J. R. Hughes,et al. Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .
[26] Rafael Montenegro,et al. The Meccano Method for Automatic Tetrahedral Mesh Generation of Complex Genus-Zero Solids , 2009, IMR.
[27] Rafael Montenegro,et al. Local refinement of 3-D triangulations using object-oriented methods , 2004 .
[28] Kai Hormann,et al. Surface Parameterization: a Tutorial and Survey , 2005, Advances in Multiresolution for Geometric Modelling.
[29] Michael S. Floater,et al. Convex combination maps over triangulations, tilings, and tetrahedral meshes , 2006, Adv. Comput. Math..