The meccano method for simultaneous volume parametrization and mesh generation of complex solids

The meccano method is a novel and promising mesh generation method for simultaneously creating adaptive tetrahedral meshes and volume parametrizations of a complex solid. We highlight the fact that the method requires minimum user intervention and has a low computational cost. The method builds a 3-D triangulation of the solid as a deformation of an appropriate tetrahedral mesh of the meccano. The new mesh generator combines an automatic parametrization of surface triangulations, a local refinement algorithm for 3-D nested triangulations and a simultaneous untangling and smoothing procedure. At present, the procedure is fully automatic for a genus-zero solid. In this case, the meccano can be a single cube. The efficiency of the proposed technique is shown with several applications.

[1]  Graham F. Carey,et al.  Computational grids : generation, adaptation, and solution strategies , 1997 .

[2]  M. Floater Mean value coordinates , 2003, Computer Aided Geometric Design.

[3]  Rafael Montenegro,et al.  A New MeccanoTechnique for Adaptive 3-D Triangulations , 2007, IMR.

[4]  H. Si,et al.  Adaptive tetrahedral mesh generation by constrained Delaunay refinement , 2008 .

[5]  Rafael Montenegro,et al.  Implementation in ALBERTA of an Automatic Tetrahedral Mesh Generator , 2006, IMR.

[6]  L. Freitag,et al.  Local optimization-based simplicial mesh untangling and improvement. , 2000 .

[7]  P. Knupp Achieving finite element mesh quality via optimization of the Jacobian matrix norm and associated quantities. Part II—A framework for volume mesh optimization and the condition number of the Jacobian matrix , 2000 .

[8]  Hong Qin,et al.  Harmonic volumetric mapping for solid modeling applications , 2007, Symposium on Solid and Physical Modeling.

[9]  J. M. Escobar,et al.  An algebraic method for smoothing surface triangulations on a local parametric space , 2006 .

[10]  Michael S. Floater,et al.  Mean value coordinates , 2003, Comput. Aided Geom. Des..

[11]  Michael S. Floater,et al.  One-to-one piecewise linear mappings over triangulations , 2003, Math. Comput..

[12]  Ángel Plaza,et al.  Efficient refinement/derefinement algorithm of nested meshes to solve evolution problems , 1994 .

[13]  Kunibert G. Siebert,et al.  Design of Adaptive Finite Element Software - The Finite Element Toolbox ALBERTA , 2005, Lecture Notes in Computational Science and Engineering.

[14]  J. M. Cascón,et al.  An automatic strategy for adaptive tetrahedral mesh generation , 2009 .

[15]  Charlie C. L. Wang,et al.  Automatic PolyCube-Maps , 2008, GMP.

[16]  Patrick M. Knupp,et al.  Algebraic Mesh Quality Metrics , 2001, SIAM J. Sci. Comput..

[17]  Joachim Schöberl,et al.  NETGEN An advancing front 2D/3D-mesh generator based on abstract rules , 1997 .

[18]  Hong Qin,et al.  Polycube splines , 2008, Comput. Aided Des..

[19]  J. M. González-Yuste,et al.  Simultaneous untangling and smoothing of tetrahedral meshes , 2003 .

[20]  Paolo Cignoni,et al.  PolyCube-Maps , 2004, SIGGRAPH 2004.

[21]  Igor Kossaczký A recursive approach to local mesh refinement in two and three dimensions , 1994 .

[22]  L. Freitag,et al.  Tetrahedral mesh improvement via optimization of the element condition number , 2002 .

[23]  Michael S. Floater,et al.  Parametrization and smooth approximation of surface triangulations , 1997, Comput. Aided Geom. Des..

[24]  Victor M. Calo,et al.  Isogeometric Analysis: Toward Unification of Computer Aided Design and Finite Element Analysis , 2008 .

[25]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[26]  Rafael Montenegro,et al.  The Meccano Method for Automatic Tetrahedral Mesh Generation of Complex Genus-Zero Solids , 2009, IMR.

[27]  Rafael Montenegro,et al.  Local refinement of 3-D triangulations using object-oriented methods , 2004 .

[28]  Kai Hormann,et al.  Surface Parameterization: a Tutorial and Survey , 2005, Advances in Multiresolution for Geometric Modelling.

[29]  Michael S. Floater,et al.  Convex combination maps over triangulations, tilings, and tetrahedral meshes , 2006, Adv. Comput. Math..