Modified HSS iteration methods for a class of non-Hermitian positive-definite linear systems

Abstract We consider the numerical solution of a class of non-Hermitian positive-definite linear systems by the modified Hermitian and skew-Hermitian splitting (MHSS) iteration method. We show that the MHSS iteration method converges unconditionally even when the real and the imaginary parts of the coefficient matrix are nonsymmetric and positive semidefinite and, at least, one of them is positive definite. At each step the MHSS iteration method requires to solve two linear sub-systems with real nonsymmetric positive definite coefficient matrices. We propose to use inner iteration methods to compute approximate solutions of these linear sub-systems. We illustrate the performance of the MHSS method and its inexact variant by two numerical examples.

[1]  Owe Axelsson,et al.  A Class of Nested Iteration Schemes for Linear Systems with a Coefficient Matrix with a Dominant Positive Definite Symmetric Part , 2004, Numerical Algorithms.

[2]  M. Ng,et al.  Hermitian and Skew-Hermitian Splitting Methods for Non-Hermitian Positive Definite Linear Systems , 2002, SIAM J. Matrix Anal. Appl..

[3]  Guo-Feng Zhang,et al.  On HSS-based constraint preconditioners for generalized saddle-point problems , 2010, Numerical Algorithms.

[4]  Zhong-Zhi Bai,et al.  Splitting iteration methods for non-Hermitian positive definite systems of linear equations , 2007 .

[5]  Gene H. Golub,et al.  Hermitian and Skew-Hermitian Splitting Methods for Non-Hermitian Positive Definite Linear Systems , 2002, SIAM J. Matrix Anal. Appl..

[6]  Gene H. Golub,et al.  Block Triangular and Skew-Hermitian Splitting Methods for Positive-Definite Linear Systems , 2005, SIAM J. Sci. Comput..

[7]  Fang Chen,et al.  On HSS and AHSS iteration methods for nonsymmetric positive definite Toeplitz systems , 2010, J. Comput. Appl. Math..

[8]  Gene H. Golub,et al.  Convergence properties of preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite matrices , 2007, Math. Comput..

[9]  Gene H. Golub,et al.  Optimal Parameter in Hermitian and Skew-Hermitian Splitting Method for Certain Two-by-Two Block Matrices , 2006, SIAM J. Sci. Comput..

[10]  Michele Benzi,et al.  A Generalization of the Hermitian and Skew-Hermitian Splitting Iteration , 2009, SIAM J. Matrix Anal. Appl..

[11]  Gene H. Golub,et al.  Accelerated Hermitian and skew-Hermitian splitting iteration methods for saddle-point problems , 2007 .

[12]  Yang Cao,et al.  A splitting preconditioner for saddle point problems , 2011, Numer. Linear Algebra Appl..

[13]  Cristina Tablino Possio,et al.  Preconditioned Hermitian and Skew-Hermitian Splitting Method for Finite Element Approximations of Convection-Diffusion Equations , 2009, SIAM J. Matrix Anal. Appl..

[14]  Jiang,et al.  ON CONTRACTION AND SEMI-CONTRACTION FACTORS OF GSOR METHOD FOR AUGMENTED LINEAR SYSTEMS * , 2010 .

[15]  Gene H. Golub,et al.  Spectral Analysis of a Preconditioned Iterative Method for the Convection-Diffusion Equation , 2007, SIAM J. Matrix Anal. Appl..

[16]  Fang Chen,et al.  Modified HSS iteration methods for a class of complex symmetric linear systems , 2010, Computing.

[17]  Michele Benzi,et al.  New multigrid smoothers for the Oseen problem , 2010, Numer. Linear Algebra Appl..

[18]  Qiang Du,et al.  Finite-element approximations of a Ladyzhenskaya model for stationary incompressible viscous flow , 1990 .