A LOCAL RESTART PROCEDURE FOR ITERATIVE PROJECTION METHODS FOR NONLINEAR SYMMETRIC EIGENPROBLEMS
暂无分享,去创建一个
[1] H. Voss. An Arnoldi Method for Nonlinear Symmetric Eigenvalue Problems , 2003 .
[2] E. Rogers. A mimmax theory for overdamped systems , 1964 .
[3] Heinrich Voss,et al. A Jacobi-Davidson Method for Nonlinear Eigenproblems , 2004, International Conference on Computational Science.
[4] O. von Estorff,et al. NUMERICAL ANALYSIS OF TIRE ROLLING NOISE RADIATION - A STATE OF THE ART REVIEW , 2001 .
[5] Gerard L. G. Sleijpen,et al. Jacobi-Davidson Style QR and QZ Algorithms for the Reduction of Matrix Pencils , 1998, SIAM J. Sci. Comput..
[6] Timo Betcke,et al. A Jacobi-Davidson-type projection method for nonlinear eigenvalue problems , 2004, Future Gener. Comput. Syst..
[7] K. Hadeler,et al. A minimax principle for nonlinear eigenvalue problems with applications to nonoverdamped systems , 1982 .
[8] H. Voss. An Arnoldi Method for Nonlinear Eigenvalue Problems , 2004 .
[9] Axel Ruhe,et al. Rational Krylov for Large Nonlinear Eigenproblems , 2004, PARA.
[10] Axel Ruhe. The Rational Krylov Algorithm for Nonlinear Matrix Eigenvalue Problems , 2003 .
[11] H. Voss,et al. Rational Krylov for Nonlinear Eigenproblems, an Iterative Projection Method , 2005 .
[12] R. Duffin. A Minimax Theory for Overdamped Networks , 1955 .
[13] R. Duffin. The Rayleigh-Ritz method for dissipative or gyroscopic systems , 1960 .
[14] A. Neumaier. RESIDUAL INVERSE ITERATION FOR THE NONLINEAR EIGENVALUE PROBLEM , 1985 .
[15] H. V. D. Vorst,et al. Jacobi-Davidson style QR and QZ algorithms for the partial reduction of matrix pencils , 1996 .