A LOCAL RESTART PROCEDURE FOR ITERATIVE PROJECTION METHODS FOR NONLINEAR SYMMETRIC EIGENPROBLEMS

For nonlinear eigenvalue problems T (¸)x = 0 satisfying a minmax characterization of its eigenvalues iterative projection methods combined with safeguarded iteration are suitable for computing all eigenvalues in a given interval. Such methods hit their limitation if a large number of eigenvalues (in the interior of the spectrum) are required. In this paper we propose a localized version of safeguarded iteration which is able to cope with this problem.

[1]  H. Voss An Arnoldi Method for Nonlinear Symmetric Eigenvalue Problems , 2003 .

[2]  E. Rogers A mimmax theory for overdamped systems , 1964 .

[3]  Heinrich Voss,et al.  A Jacobi-Davidson Method for Nonlinear Eigenproblems , 2004, International Conference on Computational Science.

[4]  O. von Estorff,et al.  NUMERICAL ANALYSIS OF TIRE ROLLING NOISE RADIATION - A STATE OF THE ART REVIEW , 2001 .

[5]  Gerard L. G. Sleijpen,et al.  Jacobi-Davidson Style QR and QZ Algorithms for the Reduction of Matrix Pencils , 1998, SIAM J. Sci. Comput..

[6]  Timo Betcke,et al.  A Jacobi-Davidson-type projection method for nonlinear eigenvalue problems , 2004, Future Gener. Comput. Syst..

[7]  K. Hadeler,et al.  A minimax principle for nonlinear eigenvalue problems with applications to nonoverdamped systems , 1982 .

[8]  H. Voss An Arnoldi Method for Nonlinear Eigenvalue Problems , 2004 .

[9]  Axel Ruhe,et al.  Rational Krylov for Large Nonlinear Eigenproblems , 2004, PARA.

[10]  Axel Ruhe The Rational Krylov Algorithm for Nonlinear Matrix Eigenvalue Problems , 2003 .

[11]  H. Voss,et al.  Rational Krylov for Nonlinear Eigenproblems, an Iterative Projection Method , 2005 .

[12]  R. Duffin A Minimax Theory for Overdamped Networks , 1955 .

[13]  R. Duffin The Rayleigh-Ritz method for dissipative or gyroscopic systems , 1960 .

[14]  A. Neumaier RESIDUAL INVERSE ITERATION FOR THE NONLINEAR EIGENVALUE PROBLEM , 1985 .

[15]  H. V. D. Vorst,et al.  Jacobi-Davidson style QR and QZ algorithms for the partial reduction of matrix pencils , 1996 .