Early electroretinographic features of streptozotocin‐induced diabetic retinopathy

Background:  This study set out to document the early electrophysiological and immunohistochemical changes that occur in the retina of experimentally induced diabetic rats.

[1]  H. Fuchs,et al.  Electroretinography as a screening method for mutations causing retinal dysfunction in mice. , 2004, Investigative ophthalmology & visual science.

[2]  A. Barber,et al.  Mapping the blood vessels with paracellular permeability in the retinas of diabetic rats. , 2003, Investigative ophthalmology & visual science.

[3]  M. Chun,et al.  Apoptotic death of photoreceptors in the streptozotocin-induced diabetic rat retina , 2003, Diabetologia.

[4]  I. Perlman,et al.  Early retinal damage in experimental diabetes: electroretinographical and morphological observations. , 2002, Experimental eye research.

[5]  F. Horn,et al.  The b-wave of the dark adapted flash electroretinogram in patients with advanced asymmetrical glaucoma and normal subjects , 2001, The British journal of ophthalmology.

[6]  E. Agardh,et al.  Retinal glial cell immunoreactivity and neuronal cell changes in rats with STZ-induced diabetes , 2001, Current eye research.

[7]  T. Gardner,et al.  Altered expression of retinal occludin and glial fibrillary acidic protein in experimental diabetes. The Penn State Retina Research Group. , 2000, Investigative ophthalmology & visual science.

[8]  P. Leuenberger,et al.  Glial reactivity, an early feature of diabetic retinopathy. , 2000, Investigative ophthalmology & visual science.

[9]  E. Ling,et al.  Neuronal and microglial response in the retina of streptozotocin-induced diabetic rats , 2000, Visual Neuroscience.

[10]  G B Arden,et al.  The electroretinogram in diabetic retinopathy. , 1999, Survey of ophthalmology.

[11]  J. Cunha-Vaz,et al.  Breakdown of the inner and outer blood retinal barrier in streptozotocin-induced diabetes. , 1998, Experimental eye research.

[12]  A. Barber,et al.  Glial reactivity and impaired glutamate metabolism in short-term experimental diabetic retinopathy. Penn State Retina Research Group. , 1998, Diabetes.

[13]  R. Carr,et al.  Evidence for photoreceptor changes in patients with diabetic retinopathy. , 1997, Investigative Ophthalmology and Visual Science.

[14]  D. Hood,et al.  Assessing abnormal rod photoreceptor activity with the a-wave of the electroretinogram: Applications and methods , 1996, Documenta Ophthalmologica.

[15]  Alain Golay,et al.  Risk factors associated with contrast sensitivity loss in diabetic patients , 1996, Graefe's Archive for Clinical and Experimental Ophthalmology.

[16]  R. Danis,et al.  Hyperoxia improves contrast sensitivity in early diabetic retinopathy. , 1996, The British journal of ophthalmology.

[17]  I. Satman,et al.  Alteration of Visual Function in Impaired Glucose Tolerance , 1996, European journal of ophthalmology.

[18]  D. Foster,et al.  Effect of diabetes associated increases in lens optical density on colour discrimination in insulin dependent diabetes. , 1994, The British journal of ophthalmology.

[19]  D. Hood,et al.  Rod phototransduction in retinitis pigmentosa: estimation and interpretation of parameters derived from the rod a-wave. , 1994, Investigative ophthalmology & visual science.

[20]  P. Sieving,et al.  Push–pull model of the primate photopic electroretinogram: A role for hyperpolarizing neurons in shaping the b-wave , 1994, Visual Neuroscience.

[21]  D. Hood,et al.  Understanding changes in the b-wave of the ERG caused by heterogeneous receptor damage. , 1994, Investigative ophthalmology & visual science.

[22]  W Seiple,et al.  A comparison of photopic and scotopic electroretinographic changes in early diabetic retinopathy. , 1992, Investigative ophthalmology & visual science.

[23]  D. Foster,et al.  Detection of colour vision abnormalities in uncomplicated type 1 diabetic patients with angiographically normal retinas. , 1992, The British journal of ophthalmology.

[24]  V. Porciatti,et al.  Nonselective Loss of Contrast Sensitivity in Visual System Testing in Early Type I Diabetes , 1992, Diabetes Care.

[25]  G. Bresnick,et al.  Characterization of the electroretinographic scotopic B-wave amplitude in diabetic and normal subjects. , 1992, Investigative ophthalmology & visual science.

[26]  G. Kieselbach,et al.  Electrophysiological changes in juvenile diabetics without retinopathy. , 1990, Archives of ophthalmology.

[27]  G. Aylward,et al.  The scotopic threshold response in diabetic retinopathy , 1989, Eye.

[28]  M. Palta,et al.  Oscillatory potential amplitudes. Relation to severity of diabetic retinopathy. , 1987, Archives of ophthalmology.

[29]  L. Wachtmeister,et al.  Basic research and clinical aspects of the oscillatory potentials of the electroretinogram , 1987, Documenta Ophthalmologica.

[30]  M Palta,et al.  Predicting progression to severe proliferative diabetic retinopathy. , 1987, Archives of ophthalmology.

[31]  G. Bresnick Diabetic retinopathy viewed as a neurosensory disorder. , 1986, Archives of ophthalmology.

[32]  J. Yudkin,et al.  Pattern electroretinograms become abnormal when background diabetic retinopathy deteriorates to a preproliferative stage: possible use as a screening test. , 1986, The British journal of ophthalmology.

[33]  P. King-Smith,et al.  Rod and cone ERGs and their oscillatory potentials. , 1986, Investigative ophthalmology & visual science.

[34]  M. Palta,et al.  Electroretinographic Oscillatory Potentials Predict Progression of Diabetic Retinopathy: Preliminary Report , 1984 .

[35]  S E Simonsen,et al.  THE VALUE OF THE OSCILLATORY POTENTIAL IN SELECTING JUVENILE DIABETICS AT RISK OF DEVELOPING PROLIFERATIVE RETINOPATHY , 1980, Metabolic and pediatric ophthalmology.

[36]  S. Ennis,et al.  The effect of induced diabetes on the electroretinogram components of the pigmented rat. , 1980, Investigative ophthalmology & visual science.

[37]  T. Ogden,et al.  The oscillatory waves of the primate electroretinogram. , 1973, Vision research.

[38]  K. Naka,et al.  S‐potentials from luminosity units in the retina of fish (Cyprinidae) , 1966, The Journal of physiology.

[39]  P. Lachapelle,et al.  The electroretinogram recorded at the onset of dark-adaptation: understanding the origin of the scotopic oscillatory potentials , 2004, Documenta Ophthalmologica.

[40]  G. Benedek,et al.  Human oscillatory potentials: components of rod origin. , 1996, Ophthalmologica. Journal international d'ophtalmologie. International journal of ophthalmology. Zeitschrift fur Augenheilkunde.

[41]  M. Naash,et al.  Functional abnormalities in transgenic mice expressing a mutant rhodopsin gene. , 1995, Investigative ophthalmology & visual science.

[42]  K. Kawasaki,et al.  Development of electroretinographic alterations in streptozotocin-induced diabetes in rats. , 1995, Ophthalmic research.

[43]  H Iijima,et al.  Photopic electroretinogram implicit time in diabetic retinopathy. , 1994, Japanese journal of ophthalmology.

[44]  J. Price,et al.  Oscillatory potentials. History, techniques and potential use in the evaluation of disturbances of retinal circulation. , 1981, Survey of ophthalmology.