The Einstein Telescope

Interferometric gravitational wave detectors are amongst the most sensitive instruments ever built. They are hunting for tiny oscillations in space-time originating from cosmic events such as inspiraling objects or supernova explosions. These detectors are based on Michelson-like interferometers reaching sensitivities for lengths changes of better than 10-18 m/√Hz. Currently, a second generation of gravitational wave detectors is under construction reducing relevant noise sources throughout their detection band by one order of magnitude. First steps towards a third generation detector - having two orders of magnitude larger sensitivity compared to the first generation - have been made. This gravitational wave observatory - the Einstein Telescope - is a European-wide effort leading to a sophisticated design including an optimum site selection. We present the status of these activities and give an overview of the state of the art technologies needed to realize such an instrument.

[1]  Yunseop Kim,et al.  Remote Sensing and Control of an Irrigation System Using a Distributed Wireless Sensor Network , 2008, IEEE Transactions on Instrumentation and Measurement.

[2]  Alban Remillieux,et al.  Titania-doped tantala/silica coatings for gravitational-wave detection , 2006 .

[3]  T. Hayler,et al.  Beating the Spin-Down Limit on Gravitational Wave Emission from the Vela Pulsar , 2011 .

[4]  N. Letendre,et al.  THE STATUS OF VIRGO , 2006 .

[5]  B Johnson,et al.  An upper limit on the stochastic gravitational-wave background of cosmological origin , 2009, Nature.

[6]  Martin M. Fejer,et al.  Test mass materials for a new generation of gravitational wave detectors , 2003, SPIE Astronomical Telescopes + Instrumentation.

[7]  Measurements of a low-temperature mechanical dissipation peak in a single layer of Ta2O5 doped with TiO2 , 2008, 0802.2686.

[8]  Andreas Tünnermann,et al.  Realization of a monolithic high-reflectivity cavity mirror from a single silicon crystal. , 2010, Physical review letters.

[9]  J. Hough,et al.  Limits to the measurement of displacement in an interferometric gravitational radiation detector , 1978 .

[10]  G. M. Harry,et al.  Advanced LIGO: the next generation of gravitational wave detectors , 2010 .

[11]  M. M. Casey,et al.  The GEO-HF project , 2006 .

[12]  S. Rowan,et al.  Cryogenic and room temperature strength of sapphire jointed by hydroxide-catalysis bonding , 2014 .

[13]  I. Martin,et al.  Low temperature mechanical dissipation of an ion-beam sputtered silica film , 2014 .

[14]  B. J. Meers,et al.  Experimental demonstration of dual recycling for interferometric gravitational-wave detectors. , 1991, Physical review letters.

[15]  Kentaro Somiya,et al.  Detector configuration of KAGRA–the Japanese cryogenic gravitational-wave detector , 2011, 1111.7185.

[16]  C. Broeck,et al.  BEATING THE SPIN-DOWN LIMIT ON GRAVITATIONAL WAVE EMISSION FROM THE VELA PULSAR , 2008, 0805.4758.

[17]  Benno Willke,et al.  The Einstein Telescope: a third-generation gravitational wave observatory , 2010 .

[18]  Marco Lops,et al.  The Virgo interferometer , 1997 .

[19]  F. Travasso,et al.  Breaking strength tests on silicon and sapphire bondings for gravitational wave detectors , 2010 .

[20]  M. Loupias,et al.  The status of VIRGO , 2006 .

[21]  P. Murray,et al.  Strength testing and SEM imaging of hydroxide-catalysis bonds between silicon , 2009 .

[22]  M. Fejer,et al.  Cryogenic mechanical loss measurements of heat-treated hafnium dioxide , 2011 .

[23]  A. Khalaidovski,et al.  Evaluation of heat extraction through sapphire fibers for the GW observatory KAGRA , 2014, 1401.2346.

[24]  I. Martin,et al.  Silicon mirror suspensions for gravitational wave detectors , 2014 .

[25]  Helena Armandula,et al.  Seismic isolation and suspension systems for Advanced LIGO , 2004, SPIE Astronomical Telescopes + Instrumentation.

[26]  A. Einstein The Foundation of the General Theory of Relativity , 1916 .

[27]  Wei Zhang,et al.  Tenfold reduction of Brownian noise in high-reflectivity optical coatings , 2013, Nature Photonics.

[28]  Roman Schnabel Gravitational wave detectors: Squeezing up the sensitivity , 2008 .

[29]  S. Bose,et al.  Scientific objectives of Einstein Telescope , 2012, 1206.0331.

[30]  Gianpietro Cagnoli,et al.  Bulk optical absorption of high resistivity silicon at 1550 nm. , 2013, Optics letters.

[31]  Ernst-Bernhard Kley,et al.  Calculation of thermal noise in grating reflectors , 2013 .

[32]  S. Leavey,et al.  Design of a speed meter interferometer proof-of-principle experiment , 2014, 1405.2783.

[33]  M. Fejer,et al.  Comparison of the temperature dependence of the mechanical dissipation in thin films of Ta2O5 and Ta2O5 doped with TiO2 , 2009 .

[34]  Joshua R. Smith,et al.  LIGO: the Laser Interferometer Gravitational-Wave Observatory , 1992, Science.

[35]  S. Nietzsche,et al.  High mechanical Q-factor measurements on calcium fluoride at cryogenic temperatures , 2007 .

[36]  Massachusetts Institute of Technology,et al.  Frequency and surface dependence of the mechanical loss in fused silica , 2006 .

[37]  Martin M. Fejer,et al.  Thermal noise in interferometric gravitational wave detectors due to dielectric optical coatings , 2001, gr-qc/0109073.

[38]  D. Rabeling,et al.  Einstein telescope site selection: Seismic and gravity gradient noise , 2010 .

[39]  C. Caves Quantum Mechanical Noise in an Interferometer , 1981 .

[40]  Andreas Freise,et al.  Prospects of higher-order Laguerre Gauss modes in future gravitational wave detectors , 2009, 0901.4931.

[41]  Martin M. Fejer,et al.  Mechanical quality factor measurements of monolithically suspended fused silica test masses of the GEO 600 gravitational wave detector , 2004 .

[42]  Yuri Levin Internal thermal noise in the LIGO test masses: A direct approach , 1998 .

[43]  M. Punturo,et al.  Challenges in thermal noise for 3rd generation of gravitational wave detectors , 2011 .

[44]  Harald Lück,et al.  The GEO600 project , 1997 .

[45]  A. Einstein,et al.  Die Grundlage der allgemeinen Relativitätstheorie , 1916 .

[46]  A. Freise,et al.  Status of VIRGO , 2004 .

[47]  S. Bose,et al.  Sensitivity studies for third-generation gravitational wave observatories , 2010, 1012.0908.

[48]  Rowan,et al.  Very high Q measurements on a fused silica monolithic pendulum for use in enhanced gravity wave detectors , 2000, Physical review letters.

[49]  B. S. Sathyaprakash,et al.  Cosmography with the Einstein Telescope , 2009, 0906.4151.

[50]  N. Beveridge,et al.  Low-temperature strength tests and SEM imaging of hydroxide catalysis bonds in silicon Low-temperature strength tests and SEM imaging of hydroxide catalysis bonds in silicon , 2011 .

[51]  K. Kawabe,et al.  Status of TAMA project , 1997 .