The Einstein Telescope
暂无分享,去创建一个
[1] Yunseop Kim,et al. Remote Sensing and Control of an Irrigation System Using a Distributed Wireless Sensor Network , 2008, IEEE Transactions on Instrumentation and Measurement.
[2] Alban Remillieux,et al. Titania-doped tantala/silica coatings for gravitational-wave detection , 2006 .
[3] T. Hayler,et al. Beating the Spin-Down Limit on Gravitational Wave Emission from the Vela Pulsar , 2011 .
[4] N. Letendre,et al. THE STATUS OF VIRGO , 2006 .
[5] B Johnson,et al. An upper limit on the stochastic gravitational-wave background of cosmological origin , 2009, Nature.
[6] Martin M. Fejer,et al. Test mass materials for a new generation of gravitational wave detectors , 2003, SPIE Astronomical Telescopes + Instrumentation.
[7] Measurements of a low-temperature mechanical dissipation peak in a single layer of Ta2O5 doped with TiO2 , 2008, 0802.2686.
[8] Andreas Tünnermann,et al. Realization of a monolithic high-reflectivity cavity mirror from a single silicon crystal. , 2010, Physical review letters.
[9] J. Hough,et al. Limits to the measurement of displacement in an interferometric gravitational radiation detector , 1978 .
[10] G. M. Harry,et al. Advanced LIGO: the next generation of gravitational wave detectors , 2010 .
[11] M. M. Casey,et al. The GEO-HF project , 2006 .
[12] S. Rowan,et al. Cryogenic and room temperature strength of sapphire jointed by hydroxide-catalysis bonding , 2014 .
[13] I. Martin,et al. Low temperature mechanical dissipation of an ion-beam sputtered silica film , 2014 .
[14] B. J. Meers,et al. Experimental demonstration of dual recycling for interferometric gravitational-wave detectors. , 1991, Physical review letters.
[15] Kentaro Somiya,et al. Detector configuration of KAGRA–the Japanese cryogenic gravitational-wave detector , 2011, 1111.7185.
[16] C. Broeck,et al. BEATING THE SPIN-DOWN LIMIT ON GRAVITATIONAL WAVE EMISSION FROM THE VELA PULSAR , 2008, 0805.4758.
[17] Benno Willke,et al. The Einstein Telescope: a third-generation gravitational wave observatory , 2010 .
[18] Marco Lops,et al. The Virgo interferometer , 1997 .
[19] F. Travasso,et al. Breaking strength tests on silicon and sapphire bondings for gravitational wave detectors , 2010 .
[20] M. Loupias,et al. The status of VIRGO , 2006 .
[21] P. Murray,et al. Strength testing and SEM imaging of hydroxide-catalysis bonds between silicon , 2009 .
[22] M. Fejer,et al. Cryogenic mechanical loss measurements of heat-treated hafnium dioxide , 2011 .
[23] A. Khalaidovski,et al. Evaluation of heat extraction through sapphire fibers for the GW observatory KAGRA , 2014, 1401.2346.
[24] I. Martin,et al. Silicon mirror suspensions for gravitational wave detectors , 2014 .
[25] Helena Armandula,et al. Seismic isolation and suspension systems for Advanced LIGO , 2004, SPIE Astronomical Telescopes + Instrumentation.
[26] A. Einstein. The Foundation of the General Theory of Relativity , 1916 .
[27] Wei Zhang,et al. Tenfold reduction of Brownian noise in high-reflectivity optical coatings , 2013, Nature Photonics.
[28] Roman Schnabel. Gravitational wave detectors: Squeezing up the sensitivity , 2008 .
[29] S. Bose,et al. Scientific objectives of Einstein Telescope , 2012, 1206.0331.
[30] Gianpietro Cagnoli,et al. Bulk optical absorption of high resistivity silicon at 1550 nm. , 2013, Optics letters.
[31] Ernst-Bernhard Kley,et al. Calculation of thermal noise in grating reflectors , 2013 .
[32] S. Leavey,et al. Design of a speed meter interferometer proof-of-principle experiment , 2014, 1405.2783.
[33] M. Fejer,et al. Comparison of the temperature dependence of the mechanical dissipation in thin films of Ta2O5 and Ta2O5 doped with TiO2 , 2009 .
[34] Joshua R. Smith,et al. LIGO: the Laser Interferometer Gravitational-Wave Observatory , 1992, Science.
[35] S. Nietzsche,et al. High mechanical Q-factor measurements on calcium fluoride at cryogenic temperatures , 2007 .
[36] Massachusetts Institute of Technology,et al. Frequency and surface dependence of the mechanical loss in fused silica , 2006 .
[37] Martin M. Fejer,et al. Thermal noise in interferometric gravitational wave detectors due to dielectric optical coatings , 2001, gr-qc/0109073.
[38] D. Rabeling,et al. Einstein telescope site selection: Seismic and gravity gradient noise , 2010 .
[39] C. Caves. Quantum Mechanical Noise in an Interferometer , 1981 .
[40] Andreas Freise,et al. Prospects of higher-order Laguerre Gauss modes in future gravitational wave detectors , 2009, 0901.4931.
[41] Martin M. Fejer,et al. Mechanical quality factor measurements of monolithically suspended fused silica test masses of the GEO 600 gravitational wave detector , 2004 .
[42] Yuri Levin. Internal thermal noise in the LIGO test masses: A direct approach , 1998 .
[43] M. Punturo,et al. Challenges in thermal noise for 3rd generation of gravitational wave detectors , 2011 .
[44] Harald Lück,et al. The GEO600 project , 1997 .
[45] A. Einstein,et al. Die Grundlage der allgemeinen Relativitätstheorie , 1916 .
[46] A. Freise,et al. Status of VIRGO , 2004 .
[47] S. Bose,et al. Sensitivity studies for third-generation gravitational wave observatories , 2010, 1012.0908.
[48] Rowan,et al. Very high Q measurements on a fused silica monolithic pendulum for use in enhanced gravity wave detectors , 2000, Physical review letters.
[49] B. S. Sathyaprakash,et al. Cosmography with the Einstein Telescope , 2009, 0906.4151.
[50] N. Beveridge,et al. Low-temperature strength tests and SEM imaging of hydroxide catalysis bonds in silicon Low-temperature strength tests and SEM imaging of hydroxide catalysis bonds in silicon , 2011 .
[51] K. Kawabe,et al. Status of TAMA project , 1997 .