Recent progress in solid oxide and lithium ion conducting electrolytes research

Recent material developments of fast solid oxide and lithium ion conductors are reviewed. Special emphasis is placed on the correlation between the composition, structure, and electrical transport properties of perovskite-type, perovskite-related, and other inorganic crystalline materials in terms of the required functional properties for practical applications, such as fuel or hydrolysis cells and batteries. The discussed materials include Sr- and Mg-doped LaGaO3, Ba2In2O5, Bi4V2O11, RE-doped CeO2, (Li,La,)TiO3, Li3La3La3Nb2O12 (M=Nb, Ta), and Na super-ionic conductor-type phosphate. Critical problems with regard to the development of practically useful devices are discussed.

[1]  C. Fisher,et al.  Defect, protons and conductivity in brownmillerite-structured Ba2In2O5 , 1999 .

[2]  Venkataraman Thangadurai,et al.  Li6ALa2Ta2O12 (A = Sr, Ba): Novel Garnet‐Like Oxides for Fast Lithium Ion Conduction , 2005 .

[3]  E. Ivers-Tiffée,et al.  Materials and concepts for solid oxide fuel cells (SOFCs) in stationary and mobile applications , 2004 .

[4]  A. Manthiram,et al.  Characterization of oxygen-deficient perovskites as oxide-ion electrolytes , 1993 .

[5]  Robert A. Huggins,et al.  Electrochemical Methods for Determining Kinetic Properties of Solids , 1978 .

[6]  Meilin Liu,et al.  Study of transition metal oxide doped LaGaO3 as electrode materials for LSGM-based solid oxide fuel cells , 1998 .

[7]  V. Thangadurai,et al.  Investigations on electrical conductivity and chemical compatibility between fast lithium ion conducting garnet-like Li6BaLa2Ta2O12 and lithium battery cathodes , 2005 .

[8]  Tatsumi Ishihara,et al.  Effects of rare earth cations doped for La site on the oxide ionic conductivity of LaGaO3-based perovskite type oxide , 1995 .

[9]  E. Subbarao,et al.  Solid electrolytes with oxygen ion conduction , 1984 .

[10]  K. Hayashi,et al.  Crystal structures of La3Li5M2O12 (M=Nb, Ta) , 1988 .

[11]  Nigel P. Brandon,et al.  Recent Advances in Materials for Fuel Cells , 2003 .

[12]  V. Thangadurai,et al.  Mixed oxide ion and electronic conductivity in perovskite-type SrSnO3 by Fe substitution , 2003 .

[13]  H. Iwahara,et al.  Ionic conduction in perovskite-type oxide solid solution and its application to the solid electrolyte fuel cell , 1971 .

[14]  Joyce Smith Cooper,et al.  Taxonomies of SOFC material and manufacturing alternatives , 2005 .

[15]  John B. Goodenough,et al.  Electrode Performance Test on Single Ceramic Fuel Cells Using as Electrolyte Sr‐ and Mg‐Doped LaGaO3 , 1997 .

[16]  V. Thangadurai,et al.  Synthesis and Electrical Properties of K- and Pr-Substituted LaGaO3 and LaInO3 Perovskites , 2001 .

[17]  G. Adachi,et al.  Fast Li⊕ Conducting Ceramic Electrolytes , 1996 .

[18]  G. Adachi,et al.  High Li+ Conducting Ceramics , 1994 .

[19]  T. Ishihara,et al.  Improved Oxide Ion Conductivity in La0.8Sr0.2Ga0.8Mg0.2O3 by Doping Co , 1999 .

[20]  R. Huggins Solid State Ionics , 1989 .

[21]  山本 治,et al.  Lithium ion batteries : fundamentals and performance , 1998 .

[22]  H. Rickert Electrochemistry of solids , 1982 .

[23]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[24]  G. Jellison,et al.  A Stable Thin‐Film Lithium Electrolyte: Lithium Phosphorus Oxynitride , 1997 .

[25]  J. Goodenough,et al.  A Superior Oxide-Ion Electrolyte. , 1995 .

[26]  W. Weppner,et al.  Investigations of electronic minority charge carrier conductivity in La0.9Sr0.1Ga0.8Mg0.2O2.85 , 2000 .

[27]  M. Mogensen,et al.  Conductivity of A- and B-site doped LaAlO3, LaGaO3, LaScO3 and LaInO3 perovskites , 2000 .

[28]  S. Hashimoto,et al.  Conduction properties of CaTi1−xMxO3−α (M=Ga,Sc) at elevated temperatures , 2001 .

[29]  Venkataraman Thangadurai,et al.  Solid state lithium ion conductors: Design considerations by thermodynamic approach , 2002 .

[30]  Sano,et al.  A low-operating-temperature solid oxide fuel cell in hydrocarbon-Air mixtures , 2000, Science.

[31]  John B. Goodenough,et al.  Superior Perovskite Oxide‐Ion Conductor; Strontium‐ and Magnesium‐Doped LaGaO3: I, Phase Relationships and Electrical Properties , 2005 .

[32]  H. Loye,et al.  Recent developments in oxide ion conductors: Aurivillius phases , 1996 .

[33]  W. Fischer,et al.  Structural transformation of the oxygen and proton conductor Ba2In2O5 in humid air : an in-situ X-ray powder diffraction study , 1999 .

[34]  Venkataraman Thangadurai,et al.  Novel Fast Lithium Ion Conduction in Garnet‐Type Li5La3M2O12 (M = Nb, Ta) , 2003 .

[35]  N. Bonanos Transport properties and conduction mechanism in high-temperature protonic conductors , 1992 .

[36]  Venkataraman Thangadurai,et al.  Lithium Lanthanum Titanates: A Review , 2003 .

[37]  A. West,et al.  Review of crystalline lithium-ion conductors suitable for high temperature battery applications , 1997 .

[38]  J. Goodenough,et al.  Oxide-ion conduction in Ba2In2O5 and Ba3In2MO8 (M=Ce, Hf, or Zr) , 1990 .

[39]  Tatsumi Ishihara,et al.  Doped LaGaO3 Perovskite Type Oxide as a New Oxide Ionic Conductor , 1994 .

[40]  F. Abbattista,et al.  Remarks on the binary systems Li2OMe2O5 (MeNb, Ta) , 1987 .

[41]  T. Schober,et al.  The oxygen and proton conductor Ba2In2O5: Thermogravimetry of proton uptake , 1998 .

[42]  Takashi Uchida,et al.  High ionic conductivity in lithium lanthanum titanate , 1993 .

[43]  W. Göpel,et al.  Oxide ion conducting solid electrolytes based on Bi2O3 , 1996 .

[44]  W. C. Heraeus,et al.  Über die elektrolytische Leitung fester Körper bei sehr hohen Temperaturen , 1899 .

[45]  H. Rickert Solid Ionic Conductors: Principles and Applications , 1978 .

[46]  Daxiang Huang,et al.  Characterization of β‐Silicon Carbide Powders Synthesized by the Carbothermal Reduction of Silicon Carbide Precursors , 1998 .

[47]  Petr Novák,et al.  Insertion Electrode Materials for Rechargeable Lithium Batteries , 1998 .

[48]  T. Etsell,et al.  Electrical properties of solid oxide electrolytes , 1970 .

[49]  T. Yao,et al.  Crystal structure of Ga-doped Ba2In2O5 and its oxide ion conductivity , 2000 .

[50]  John B. Goodenough Oxide-ion electrolytes , 2003 .

[51]  A. Kovalevsky,et al.  Ceria-based materials for solid oxide fuel cells , 2001 .

[52]  J. Irvine,et al.  CRYSTALLINE LITHIUM ION CONDUCTORS , 1989 .

[53]  P. Birke,et al.  Electrolytic Stability Limit and Rapid Lithium Insertion in the Fast‐Ion‐Conducting Li0.29La0.57TiO3 Perovskite‐Type Compound , 1997 .

[54]  H. Loye,et al.  Recent developments in perovskite-based oxide ion conductors , 1995 .

[55]  V. Thangadurai,et al.  Ce0.8Sm0.2O1.9: characterization of electronic charge carriers and application in limiting current oxygen sensors , 2004 .

[56]  Venkataraman Thangadurai,et al.  Crystal Structure Revision and Identification of Li+-Ion Migration Pathways in the Garnet-like Li5La3M2O12 (M = Nb, Ta) Oxides , 2004 .

[57]  H. Yamasaki,et al.  On the sulfur defect model for the lead chevrel compound — The density measurement , 1988 .

[58]  T. Ishihara,et al.  Oxide Ion Conductivity in Doped NdAlO3 Perovskite‐Type Oxides , 1994 .

[59]  G. Mairesse,et al.  Phase transitions and ionic conductivity in Bi4V2O11 an oxide with a layered structure , 1988 .

[60]  A. Petric,et al.  Superior Oxygen Ion Conductivity of Lanthanum Gallate Doped with Strontium and Magnesium , 1996 .

[61]  M. Armand Solid electrolytes : General principles, characterization, Materials, Applications. Edited by Paul Hagenmuller and W. Van Gool, Academic Press, New York, 1978, 549 pp., $ 52, £ 33.80 , 1979 .

[62]  G. Mairesse,et al.  Recent Material Developments in Fast Oxide Ion Conductors , 1998 .

[63]  Brian C. H. Steele,et al.  Appraisal of Ce1−yGdyO2−y/2 electrolytes for IT-SOFC operation at 500°C , 2000 .

[64]  Hideaki Inaba,et al.  Ceria-based solid electrolytes , 1996 .

[65]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[66]  Brian C. H. Steele OXYGEN ION CONDUCTORS , 1989 .

[67]  B. Steele,et al.  Materials for fuel-cell technologies , 2001, Nature.

[68]  N. Minh Ceramic Fuel Cells , 1993 .

[69]  D. Mazza Remarks on a ternary phase in the La2O3Me2O5Li2O system (Me=Nb, Ta) , 1988 .

[70]  P. Bruce,et al.  Solid State Electrochemistry , 1997 .

[71]  V. Thangadurai,et al.  Li6ALa2Nb2O12 (A=Ca, Sr, Ba): A New Class of Fast Lithium Ion Conductors with Garnet-Like Structure , 2005 .