Identifying topology in power networks in the absence of breaker status sensor signals

This paper presents the concept of a tapered deep neural network, subject to unsupervised training layer by layer, under a criterion of maximum entropy, to perform the estimation of breaker status in the absence of a specific sensor signal. The almost perfect prediction power of the model confirms the conjecture that the knowledge of the topology of a network is hidden in the electric measurement values in the network. A test case is presented with computing speed accelerated by using a GPU (graphics processing unit). The comparison with a previous model illustrates the superiority of the novel approach.

[1]  K. Clements,et al.  Detection and identification of topology errors in electric power systems , 1988 .

[2]  Felix F. Wu,et al.  Detection of Topology Errors by State Estimation , 1989, IEEE Power Engineering Review.

[3]  V. Miranda,et al.  Comparison of approaches to identify topology errors in the scope of state estimation studies , 2001, 2001 IEEE Porto Power Tech Proceedings (Cat. No.01EX502).

[4]  K. Clements,et al.  Bayesian-based hypothesis testing for topology error identification in generalized state estimation , 2004, IEEE Transactions on Power Systems.

[5]  K. A. Clements,et al.  Topology error identification using normalized Lagrange multipliers , 1998 .

[6]  A. M. Leite da Silva,et al.  Online topology determination and bad data suppression in power system operation using artificial neural networks , 1997, Proceedings of the 20th International Conference on Power Industry Computer Applications.

[7]  V. Miranda,et al.  Reconstructing Missing Data in State Estimation With Autoencoders , 2012, IEEE Transactions on Power Systems.

[8]  Vladimiro Miranda,et al.  Towards an Auto-Associative Topology State Estimator , 2013, IEEE Transactions on Power Systems.

[9]  Stephen V. Stehman,et al.  Selecting and interpreting measures of thematic classification accuracy , 1997 .

[10]  I. S. Costa,et al.  Identification of topology errors in power system state estimation , 1993 .

[11]  A. Monticelli Modeling circuit breakers in weighted least squares state estimation , 1993 .

[12]  A. Abur,et al.  Breaker Status Identification , 2010, IEEE Transactions on Power Systems.

[13]  Jose C. Principe,et al.  Breaker status uncovered by autoencoders under unsupervised maximum mutual information training , 2013 .

[14]  Surya Ganguli,et al.  Exact solutions to the nonlinear dynamics of learning in deep linear neural networks , 2013, ICLR.

[15]  R. Oliveira Training autoencoders for state estimation in smart grids , 2017 .

[16]  K. A. Clements,et al.  Simultaneous estimation of state variables and network topology for power system real-time modeling , 2016 .

[17]  J. P. Pandey,et al.  Topology identification, bad data processing, and state estimation using fuzzy pattern matching , 2005, IEEE Transactions on Power Systems.

[18]  S. C. Srivastava,et al.  Topology processing and static state estimation using artificial neural networks , 1996 .

[19]  H. Glavitsch,et al.  Detection and identification of topological errors in online power system analysis , 1991 .

[20]  R. Lugtu,et al.  Power System State Estimation: Detection of Topological Errors , 1980, IEEE Transactions on Power Apparatus and Systems.