A dual-active-set algorithm for positive semi-definite quadratic programming

Because of the many important applications of quadratic programming, fast and efficient methods for solving quadratic programming problems are valued. Goldfarb and Idnani (1983) describe one such method. Well known to be efficient and numerically stable, the Goldfarb and Idnani method suffers only from the restriction that in its original form it cannot be applied to problems which are positive semi-definite rather than positive definite. In this paper, we present a generalization of the Goldfarb and Idnani method to the positive semi-definite case and prove finite termination of the generalized algorithm. In our generalization, we preserve the spirit of the Goldfarb and Idnani method, and extend their numerically stable implementation in a natural way.

[1]  R. Fletcher Practical Methods of Optimization , 1988 .

[2]  Nicholas I. M. Gould,et al.  Large-scale nonlinear constrained optimization , 1992 .

[3]  Natashia Boland,et al.  An algorithm for solving quadratic network flow problems | NOVA. The University of Newcastle's Digital Repository , 1991 .

[4]  K. Schittkowski The nonlinear programming method of Wilson, Han, and Powell with an augmented Lagrangian type line search function , 1982 .

[5]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[6]  Shih-Ping Han A globally convergent method for nonlinear programming , 1975 .

[7]  J. Pang,et al.  Iterative methods for large convex quadratic programs: a survey , 1987 .

[8]  Donald Goldfarb,et al.  A numerically stable dual method for solving strictly convex quadratic programs , 1983, Math. Program..

[9]  Philip E. Gill,et al.  Numerically stable methods for quadratic programming , 1978, Math. Program..

[10]  Gene H. Golub,et al.  Matrix computations , 1983 .

[11]  M. Powell On the quadratic programming algorithm of Goldfarb and Idnani , 1985 .

[12]  Daniel Tuyttens,et al.  On large scale nonlinear Network optimization , 1990, Math. Program..

[13]  Francisco J. Prieto,et al.  A Sequential Quadratic Programming Algorithm Using an Incomplete Solution of the Subproblem , 1995, SIAM J. Optim..

[14]  Natashia Boland,et al.  An Algorithm for Non-Linear Network Programming: Implementation, Results and Comparisons , 1992 .

[15]  Philip E. Gill,et al.  Practical optimization , 1981 .

[16]  Shih-Ping Han,et al.  Superlinearly convergent variable metric algorithms for general nonlinear programming problems , 1976, Math. Program..

[17]  James Demmel,et al.  Jacobi's Method is More Accurate than QR , 1989, SIAM J. Matrix Anal. Appl..

[18]  M. J. D. Powell,et al.  A fast algorithm for nonlinearly constrained optimization calculations , 1978 .

[19]  Philip E. Gill,et al.  Numerical Linear Algebra and Optimization , 1991 .

[20]  M. J. D. Powell,et al.  Variable Metric Methods for Constrained Optimization , 1982, ISMP.

[21]  Philippe L. Toint,et al.  On an instance of the inverse shortest paths problem , 1992, Math. Program..

[22]  P. Toint,et al.  Performance of a multifrontal scheme for partially separable optimization , 1994 .

[23]  G. R. Walsh,et al.  Methods Of Optimization , 1976 .

[24]  K. Schittkowski On the Convergence of a Sequential Quadratic Programming Method with an Augmented Lagrangian Line Search Functions. , 1982 .

[25]  M. J. D. Powell,et al.  THE CONVERGENCE OF VARIABLE METRIC METHODS FOR NONLINEARLY CONSTRAINED OPTIMIZATION CALCULATIONS , 1978 .