New perspectives on traps and radiative recombination centers for optically stimulated luminescence in LiF:Mg,Cu,P

[1]  B. Julsgaard,et al.  A Novel Nanocomposite Material for Optically Stimulated Luminescence Dosimetry. , 2022, Nano letters.

[2]  B. Julsgaard,et al.  RSC: Optically stimulated emission of LiF:Mg, Cu, P - towards 3D optically stimulated luminescence dosimetry , 2022, Journal of Physics: Conference Series.

[3]  K. Tang Study on the influence of thermal treatments on the radio-luminescence in LiF:Mg,Cu,P (GR-200A) , 2021, Radiation Measurements.

[4]  S. McKeever,et al.  Spectral evidence for defect clustering: Relevance to radiation dosimetry materials , 2021 .

[5]  J. Gómez-Ros,et al.  A kinetic model for the thermoluminescent high dose response of LiF:Mg,Cu,P (MCP-N). , 2021, Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine.

[6]  P. Balling,et al.  Recombination lifetimes of LiF:Mg,Cu,P for pulsed optically stimulated luminescence , 2021, Journal of Luminescence.

[7]  B. Julsgaard,et al.  Optical characterization of LiF:Mg,Cu,P – Towards 3D optically stimulated luminescence dosimetry , 2020 .

[8]  P. Bilski,et al.  A new approach to the 2D radiation dosimetry based on optically stimulated luminescence of LiF:Mg,Cu,P , 2020 .

[9]  P. Bilski,et al.  OPTICALLY STIMULATED LUMINESCENCE OF LiF:Mg,Cu,P POWDER-INFLUENCE OF THERMAL TREATMENT. , 2019, Radiation protection dosimetry.

[10]  P. Bilski,et al.  Optically stimulated luminescence of LiF:Mg,Cu,P with different dopant concentrations , 2019, Radiation Measurements.

[11]  B. Obryk,et al.  Effect of dopants’ concentration on high-dose high-temperature thermoluminescence of LiF:Mg,Cu,P detectors: Mg and Cu influence , 2017, 1705.01574.

[12]  L. Muren,et al.  Three-dimensional radiation dosimetry based on optically-stimulated luminescence , 2017, 1701.05341.

[13]  S. Moharil,et al.  A new highly sensitive low-Z LiF-based OSL phosphor for radiation dosimetry. , 2016, Radiation protection dosimetry.

[14]  P. Bilski,et al.  Comparative investigations of the relative thermoluminescent efficiency of LiF detectors to protons at different proton therapy facilities , 2015 .

[15]  A. Murray,et al.  Kinetics of infrared stimulated luminescence from feldspars , 2015 .

[16]  P. Bilski,et al.  Sensitivity changes of LiF:Mg,Ti and LiF:Mg,Cu,P TL detectors after proton exposures , 2015 .

[17]  A. Mandowski,et al.  OSL signal of lithium fluoride and its relationship with TL glow-curves , 2014 .

[18]  Z. Liu,et al.  Further study on the influence of thermal treatments on the glow curve structure in LiF:Mg,Cu,P (GR-200A) , 2014 .

[19]  P. Olko,et al.  Spectral characteristic of high-dose high-temperature emission from LiF:Mg,Cu,P (MCP-N) TL detectors , 2013 .

[20]  B. Guralnik,et al.  Stimulated luminescence emission from localized recombination in randomly distributed defects , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[21]  A. Rosenfeld,et al.  Experimental investigation of the 100 keV X-ray dose response of the high-temperature thermoluminescence in LiF:Mg,Ti (TLD-100): theoretical interpretation using the unified interaction model. , 2010, Radiation protection dosimetry.

[22]  A. Bos,et al.  Direct evidence for the participation of band-tails and excited-state tunnelling in the luminescence of irradiated feldspars , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[23]  A. Mandowski,et al.  Characteristics of LiF:Mg,Cu,P thermoluminescence at ultra-high dose range , 2008 .

[24]  P. Townsend,et al.  Effects of the thermal annealing on the traps and recombination centres in LiF:Mg,Cu,P thermoluminescence dosimeter , 2003 .

[25]  A. Dell'Acqua,et al.  Geant4 - A simulation toolkit , 2003 .

[26]  P. Bilski Lithium fluoride: from LiF:Mg,Ti to LiF:Mg,Cu,P. , 2002, Radiation protection dosimetry.

[27]  P. Townsend,et al.  Extended Defect Models for Thermoluminescence , 1999 .

[28]  T. Chen,et al.  Role of Copper in LiF:Mg,Cu,P Thermoluminescent Phosphors , 1998 .

[29]  P. Olko,et al.  Dependence of LiF:Mg,Cu,P (MCP-N) Glow-Curve Structure on Dopant Composition and Thermal Treatment , 1997 .

[30]  P. Olko,et al.  Thermoluminescence Properties of LiF(Mg,Cu,P) with Different Cu Concentrations , 1996 .

[31]  P. Olko Microdosimetric Interpretation of Thermoluminescence Efficiency of LiF:Mg,Cu,P (MCP-N) Detectors for Weakly and Densely Ionising Radiations , 1996 .

[32]  D. Yossian,et al.  The effect of thermal annealing on defect structure and thermoluminescence in LiF:Mg,Cu,P , 1995 .

[33]  P. Olko,et al.  Thermoluminescence emission characteristics of LiF(Mg,Cu,P) with different dopant concentrations , 1995 .

[34]  A. Bos,et al.  Influence of thermal treatments on glow curve and thermoluminescence emission spectra of LiF:Mg,Cu,P , 1995 .

[35]  L. Bøtter-Jensen,et al.  Influence on donor electron energies of the chemical composition of K, Na and Ca aluminosilicates , 1995 .

[36]  P. Olko,et al.  Thermoluminescence Efficiency of LiF:Mg,Cu,P (MCP-N) Detectors to Photons, Beta-Electrons, Alpha Particles and Thermal Neutrons , 1994 .

[37]  Y. Horowitz,et al.  Glow Curve Readout of LiF:Mg,Cu,P (GR-200) Chips at Maximum Temperatures Between 240 oC and 280 oC: Elimination of the Residual Signal , 1993 .

[38]  Y. Horowitz,et al.  Elimination of the Residual Signal in LiF:Cu,Mg,P , 1992 .

[39]  S. McKeever Measurements of emission spectra during thermoluminescence (TL) from LiF(Mg, Cu, P) TL dosimeters , 1991 .

[40]  R. T. Williams,et al.  The self-trapped exciton , 1990 .

[41]  W. Shoushan The Dependence of Thermoluminescence Response and Glow Curve Structure of LiF(Mg,CU,P) TL Materials on Mg,Cu,P Dopants Concentration , 1988 .

[42]  J. K. Srivastava,et al.  The thermoluminescence characterisation of a LiF(Mg, Cu, P) phosphor , 1988 .

[43]  L. Yuanfang,et al.  Newly Developed Highly Sensitive LiF (Mg,Cu.P) TL Chips with High Signal-to-Noise Ratio , 1986 .

[44]  Toshiyuki Nakajima,et al.  Development of a new highly sensitive LiF thermoluminescence dosimeter and its applications , 1978 .

[45]  W. Runciman,et al.  Recombination luminescence in alkali halides , 1970 .