Vertical decompositions for triangles in 3-space

We prove that, for any constant ε>0, the complexity of the vertical decomposition of a set of <italic>n</italic> triangles in three-dimensional space is <italic>O</italic>(<italic>n</italic><supscrpt>2+ε</supscrpt>+<italic>K</italic>), where <italic>K</italic> is the complexity of the arrangement of the triangles. For a single cell the complexity of the vertical decomposition is shown to be <italic>O</italic>(<italic>n</italic><supscrpt>2+ε</supscrpt>). These bounds are almost tight in the worst case. We also give a deterministic output-sensitive algorithm for computing the vertical decomposition that runs in <italic>O</italic>(<italic>n</italic><supscrpt>2</supscrpt>log<italic>n</italic>+<italic>V</italic>log<italic>n</italic>) time, where <italic>V</italic> is the complexity of the decomposition. The algorithm is reasonably simple (in particular, it tries to perform as much of the computation in two-dimensional spaces as possible) and thus is a good candidate for efficient implementations.

[1]  Leonidas J. Guibas,et al.  Combinatorial complexity bounds for arrangements of curves and spheres , 1990, Discret. Comput. Geom..

[2]  Vladlen Koltun Almost tight upper bounds for lower envelopes in higher dimensions , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.

[3]  Jirí Matousek,et al.  On range searching with semialgebraic sets , 1992, Discret. Comput. Geom..

[4]  Mark de Berg,et al.  On lazy randomized incremental construction , 1994, STOC '94.

[5]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[6]  Bernard Chazelle,et al.  A deterministic view of random sampling and its use in geometry , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[7]  David Haussler,et al.  ɛ-nets and simplex range queries , 1987, Discret. Comput. Geom..

[8]  Kenneth L. Clarkson,et al.  A Randomized Algorithm for Closest-Point Queries , 1988, SIAM J. Comput..

[9]  Micha Sharir,et al.  Nonlinearity of davenport—Schinzel sequences and of generalized path compression schemes , 1986, FOCS.

[10]  Jirí Matousek,et al.  Range searching with efficient hierarchical cuttings , 1992, SCG '92.

[11]  Leonidas J. Guibas,et al.  Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams , 1983, STOC.

[12]  Leonidas J. Guibas,et al.  Lines in space - combinatorics, algorithms and applications , 1989, Symposium on the Theory of Computing.

[13]  Kenneth L. Clarkson,et al.  Applications of random sampling in computational geometry, II , 1988, SCG '88.

[14]  Leonidas J. Guibas,et al.  A Singly Exponential Stratification Scheme for Real Semi-Algebraic Varieties and its Applications , 1991, Theor. Comput. Sci..

[15]  Jirí Matousek Range searching with efficient hierarchical cuttings , 1992, SCG '92.

[16]  Bernard Chazelle,et al.  An optimal convex hull algorithm and new results on cuttings , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[17]  Herbert Edelsbrunner,et al.  The upper envelope of piecewise linear functions: Tight bounds on the number of faces , 1989, Discret. Comput. Geom..

[18]  Ketan Mulmuley Randomized multidimensional search trees: further results in dynamic sampling , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[19]  Tomás Recio,et al.  Algorithms in Real Algebraic Geometry and Applications to Computational Geometry , 1990, Discrete and Computational Geometry.

[20]  Bernard Chazelle,et al.  Convex Partitions of Polyhedra: A Lower Bound and Worst-Case Optimal Algorithm , 1984, SIAM J. Comput..

[21]  Micha Sharir,et al.  Castles in the air revisited , 1992, SCG '92.

[22]  Ketan Mulmuley,et al.  Hidden surface removal with respect to a moving view point , 1991, STOC '91.

[23]  Micha Sharir,et al.  Triangles in space or building (and analyzing) castles in the air , 1990, Comb..

[24]  Roberto Tamassia,et al.  Efficient Point Location in a Convex Spatial Cell-Complex , 1989, SIAM J. Comput..

[25]  Bernard Chazelle,et al.  Cutting hyperplanes for divide-and-conquer , 1993, Discret. Comput. Geom..

[26]  Leonidas J. Guibas,et al.  Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams , 1983, STOC.

[27]  Thomas Ottmann,et al.  Algorithms for Reporting and Counting Geometric Intersections , 1979, IEEE Transactions on Computers.

[28]  John Hershberger,et al.  Finding the Upper Envelope of n Line Segments in O(n log n) Time , 1989, Inf. Process. Lett..

[29]  Leonidas J. Guibas,et al.  Lines in space-combinators, algorithms and applications , 1989, STOC '89.

[30]  Leonidas J. Guibas,et al.  Vertical decompositions for triangles in 3-space , 1994, SCG '94.

[31]  Robert E. Tarjan,et al.  Data structures and network algorithms , 1983, CBMS-NSF regional conference series in applied mathematics.

[32]  Mark de Berg,et al.  Ray Shooting, Depth Orders and Hidden Surface Removal , 1993, Lecture Notes in Computer Science.

[33]  David Haussler,et al.  Epsilon-nets and simplex range queries , 1986, SCG '86.

[34]  Leonidas J. Guibas,et al.  A dichromatic framework for balanced trees , 1978, 19th Annual Symposium on Foundations of Computer Science (sfcs 1978).

[35]  Micha Sharir,et al.  Output-sensitive hidden surface removal , 1989, 30th Annual Symposium on Foundations of Computer Science.

[36]  Ady Wiernik,et al.  Planar realizations of nonlinear davenport-schinzel sequences by segments , 1988, 27th Annual Symposium on Foundations of Computer Science (sfcs 1986).

[37]  Jirí Matousek,et al.  Ray Shooting and Parametric Search , 1993, SIAM J. Comput..

[38]  Leonidas J. Guibas,et al.  A Singly-Expenential Stratification Scheme for Real Semi-Algebraic Varieties and Its Applications , 1989, ICALP.

[39]  Micha Sharir,et al.  Sharp upper and lower bounds on the length of general Davenport-Schinzel sequences , 1989, J. Comb. Theory A.

[40]  Micha Sharir,et al.  Near-quadratic bounds for the motion planning problem for a polygon in a polygonal environment , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.