Motion along the mental number line reveals shared representations for numerosity and space

Perception of number and space are tightly intertwined. It has been proposed that this is due to ‘cortical recycling’, where numerosity processing takes over circuits originally processing space. Do such ‘recycled’ circuits retain their original functionality? Here, we investigate interactions between numerosity and motion direction, two functions that both localize to parietal cortex. We describe a new phenomenon in which visual motion direction adapts nonsymbolic numerosity perception, giving rise to a repulsive aftereffect: motion to the left adapts small numbers, leading to overestimation of numerosity, while motion to the right adapts large numbers, resulting in underestimation. The reference frame of this effect is spatiotopic. Together with the tuning properties of the effect this suggests that motion direction-numerosity cross-adaptation may occur in a homolog of area LIP. ‘Cortical recycling’ thus expands but does not obliterate the functions originally performed by the recycled circuit, allowing for shared computations across domains. DOI: http://dx.doi.org/10.7554/eLife.10806.001

[1]  Andreas Nieder,et al.  Temporal and Spatial Enumeration Processes in the Primate Parietal Cortex , 2006, Science.

[2]  Leonardo Fogassi,et al.  Motor functions of the parietal lobe , 2005, Current Opinion in Neurobiology.

[3]  S. Solomon,et al.  Moving Sensory Adaptation beyond Suppressive Effects in Single Neurons , 2014, Current Biology.

[4]  Rachel A Robbins,et al.  Aftereffects for face attributes with different natural variability: adapter position effects and neural models. , 2007, Journal of experimental psychology. Human perception and performance.

[5]  Patrick Cavanagh,et al.  The reference frame of the motion aftereffect is retinotopic. , 2009, Journal of vision.

[6]  Geoffrey Hall,et al.  Animal cognition , 1985, Nature.

[7]  R. Sekuler,et al.  Adaptation alters perceived direction of motion , 1976, Vision Research.

[8]  H. Kuroiwa,et al.  Nieder Cortex Temporal and Spatial Enumeration Processes in the Primate Parietal , 2013 .

[9]  G. Mather,et al.  Theoretical Models of the Motion Aftereffect , 2012 .

[10]  ROBERT S. MOYER,et al.  Time required for Judgements of Numerical Inequality , 1967, Nature.

[11]  D. Bradley,et al.  Structure and function of visual area MT. , 2005, Annual review of neuroscience.

[12]  Sheng He,et al.  Biological motion cues trigger reflexive attentional orienting , 2010, Cognition.

[13]  J. J. Higgins,et al.  The aligned rank transform for nonparametric factorial analyses using only anova procedures , 2011, CHI.

[14]  David Burr,et al.  Spatiotopic perceptual maps in humans: evidence from motion adaptation , 2012, Proceedings of the Royal Society B: Biological Sciences.

[15]  Demis Basso,et al.  Motion on Numbers: Transcranial Magnetic Stimulation on the Ventral Intraparietal Sulcus Alters Both Numerical and Motion Processes , 2009, Journal of Cognitive Neuroscience.

[16]  Gutti J. Babu,et al.  Fundamentals of Modern Statistical Methods , 2002, Technometrics.

[17]  Vincent Walsh A theory of magnitude: common cortical metrics of time, space and quantity , 2003, Trends in Cognitive Sciences.

[18]  M. Webster Adaptation and visual coding. , 2011, Journal of vision.

[19]  Y. Cohen,et al.  Eye-centered, head-centered, and complex coding of visual and auditory targets in the intraparietal sulcus. , 2005, Journal of neurophysiology.

[20]  K. Priftis,et al.  Brain damage: Neglect disrupts the mental number line , 2002, Nature.

[21]  S. Dehaene,et al.  Cultural Recycling of Cortical Maps , 2007, Neuron.

[22]  Rand R. Wilcox,et al.  Fundamentals of Modern Statistical Methods , 2001 .

[23]  Marco Zaffalon,et al.  A Bayesian Wilcoxon signed-rank test based on the Dirichlet process , 2014, ICML.

[24]  S. Dehaene,et al.  Interactions between number and space in parietal cortex , 2005, Nature Reviews Neuroscience.

[25]  P. Cavanagh,et al.  Motion adaptation shifts apparent position without the motion aftereffect , 2003, Perception & psychophysics.

[26]  J. Bradshaw,et al.  Horizontal visual motion modulates focal attention in left unilateral spatial neglect. , 1994, Journal of neurology, neurosurgery, and psychiatry.

[27]  S. Ben Hamed,et al.  Representation of the visual field in the lateral intraparietal area of macaque monkeys: a quantitative receptive field analysis , 2001, Experimental Brain Research.

[28]  F. Bremmer,et al.  Spatial invariance of visual receptive fields in parietal cortex neurons , 1997, Nature.

[29]  Martin H. Fischer,et al.  Reading space into numbers – a cross-linguistic comparison of the SNARC effect , 2008, Cognition.

[30]  Justin Halberda,et al.  Individual differences in non-verbal number acuity correlate with maths achievement , 2008, Nature.

[31]  Michael L. Anderson Neural reuse: A fundamental organizational principle of the brain , 2010, Behavioral and Brain Sciences.

[32]  S. Dehaene,et al.  The mental representation of parity and number magnitude. , 1993 .

[33]  Stanislas Dehaene,et al.  Development of Elementary Numerical Abilities: A Neuronal Model , 1993, Journal of Cognitive Neuroscience.

[34]  Denis Cousineau,et al.  Confidence intervals in within-subject designs: A simpler solution to Loftus and Masson's method , 2005 .

[35]  M. Goldberg,et al.  Ventral intraparietal area of the macaque: anatomic location and visual response properties. , 1993, Journal of neurophysiology.

[36]  E. Brannon,et al.  Monotonic Coding of Numerosity in Macaque Lateral Intraparietal Area , 2007, PLoS biology.

[37]  Giorgio Vallortigara,et al.  Number-space mapping in the newborn chick resembles humans’ mental number line , 2015, Science.

[38]  J. Assad,et al.  Direction selectivity of neurons in the macaque lateral intraparietal area. , 2009, Journal of neurophysiology.

[39]  Richard D. Morey,et al.  Confidence Intervals from Normalized Data: A correction to Cousineau (2005) , 2008 .

[40]  W. Schwarz,et al.  Searching for the functional locus of the SNARC effect: Evidence for a response-related origin , 2005, Memory & cognition.

[41]  E. Spelke,et al.  Number-Space Mapping in Human Infants , 2010, Psychological science.

[42]  T. Knapen,et al.  The spatial scale of perceptual memory in ambiguous figure perception. , 2009, Journal of vision.

[43]  Wim Fias,et al.  Representation of Number in Animals and Humans: A Neural Model , 2004, Journal of Cognitive Neuroscience.

[44]  S. Dehaene,et al.  Representation of number in the brain. , 2009, Annual review of neuroscience.

[45]  R Blake,et al.  Another perspective on the visual motion aftereffect. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[46]  Frans A. J. Verstraten,et al.  The Motion Aftereffect:A Modern Perspective , 1998 .

[47]  David C. Burr,et al.  A generalized sense of number , 2014, Proceedings of the Royal Society B: Biological Sciences.

[48]  W. Liu,et al.  Effects of Awareness on Numerosity Adaptation , 2013, PloS one.

[49]  H. Sigmundsson,et al.  Are poor mathematics skills associated with visual deficits in temporal processing? , 2010, Neuroscience Letters.

[50]  F. Durgin Texture density adaptation and visual number revisited , 2008, Current Biology.

[51]  D. Burr,et al.  A Visual Sense of Number , 2007, Current Biology.

[52]  R. Kiani,et al.  Motion-Induced Overestimation of the Number of Items in a Display , 2004, Perception.

[53]  Xiao-Hua Zhou,et al.  Statistical Methods for Meta‐Analysis , 2008 .

[54]  Elizabeth M. Brannon,et al.  Rhesus monkeys (Macaca mulatta) map number onto space , 2014, Cognition.