Development of central pattern generating circuits

[1]  Ronald R. Hoy,et al.  Postembryonic Development of Adult Motor Patterns in Crickets: A Neural Analysis , 1970, Science.

[2]  J. Miller,et al.  Mechanisms underlying pattern generation in lobster stomatogastric ganglion as determined by selective inactivation of identified neurons. IV. Network properties of pyloric system. , 1982, Journal of neurophysiology.

[3]  P A Getting,et al.  Emerging principles governing the operation of neural networks. , 1989, Annual review of neuroscience.

[4]  J. C. Smith,et al.  Pre-Bötzinger complex: a brainstem region that may generate respiratory rhythm in mammals. , 1991, Science.

[5]  E. Marder,et al.  Switching neurons are integral members of multiple oscillatory networks , 1994, Current Biology.

[6]  P. Meyrand,et al.  Functional differentiation of adult neural circuits from a single embryonic network , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[7]  C. Shatz,et al.  Synaptic Activity and the Construction of Cortical Circuits , 1996, Science.

[8]  E. Marder,et al.  Principles of rhythmic motor pattern generation. , 1996, Physiological reviews.

[9]  A. Roberts,et al.  Central Circuits Controlling Locomotion in Young Frog Tadpoles , 1998, Annals of the New York Academy of Sciences.

[10]  E Marder,et al.  Sequential developmental acquisition of cotransmitters in identified sensory neurons of the stomatogastric nervous system of the lobsters, Homarus americanus and Homarus gammarus , 1999, The Journal of comparative neurology.

[11]  W L Miller,et al.  Maturation of lobster stomatogastric ganglion rhythmic activity. , 1999, Journal of neurophysiology.

[12]  E Marder,et al.  Sequential developmental acquisition of neuromodulatory inputs to a central pattern‐generating network , 1999, The Journal of comparative neurology.

[13]  Pierre Meyrand,et al.  Central inputs mask multiple adult neural networks within a single embryonic network , 1999, Nature.

[14]  L. Landmesser,et al.  Cholinergic and GABAergic Inputs Drive Patterned Spontaneous Motoneuron Activity before Target Contact , 1999, The Journal of Neuroscience.

[15]  R. J. Wilson,et al.  Developmental disinhibition: turning off inhibition turns on breathing in vertebrates. , 2000, Journal of neurobiology.

[16]  J. Cazalets,et al.  Locomotor network maturation is transiently delayed in the MAOA-deficient mouse. , 2000, Journal of neurophysiology.

[17]  Carsten Duch,et al.  Behavioral transformations during metamorphosis: remodeling of neural and motor systems , 2000, Brain Research Bulletin.

[18]  E Marder,et al.  The actions of crustacean cardioactive peptide on adult and developing stomatogastric ganglion motor patterns. , 2000, Journal of neurobiology.

[19]  E. Jankowska Spinal interneuronal systems: identification, multifunctional character and reconfigurations in mammals , 2001, The Journal of physiology.

[20]  N. Mellen,et al.  Normal breathing requires preBötzinger complex neurokinin-1 receptor-expressing neurons , 2001, Nature Neuroscience.

[21]  E. Marder,et al.  Central pattern generators and the control of rhythmic movements , 2001, Current Biology.

[22]  Michael J. O'Donovan,et al.  Mechanisms that initiate spontaneous network activity in the developing chick spinal cord. , 2001, Journal of neurophysiology.

[23]  A. Bekoff Spontaneous embryonic motility: an enduring legacy , 2001, International Journal of Developmental Neuroscience.

[24]  P. Meyrand,et al.  Ontogeny of Modulatory Inputs to Motor Networks: Early Established Projection and Progressive Neurotransmitter Acquisition , 2001, The Journal of Neuroscience.

[25]  Martyn Goulding,et al.  The formation of sensorimotor circuits , 2002, Current Opinion in Neurobiology.

[26]  Bo Yang,et al.  A rapid switch in sympathetic neurotransmitter release properties mediated by the p75 receptor , 2002, Nature Neuroscience.

[27]  P. Branchereau,et al.  Descending 5-Hydroxytryptamine Raphe Inputs Repress the Expression of Serotonergic Neurons and Slow the Maturation of Inhibitory Systems in Mouse Embryonic Spinal Cord , 2002, The Journal of Neuroscience.

[28]  Ole Kiehn,et al.  Firing Properties of Identified Interneuron Populations in the Mammalian Hindlimb Central Pattern Generator , 2002, The Journal of Neuroscience.

[29]  M. Suster,et al.  Embryonic assembly of a central pattern generator without sensory input , 2002, Nature.

[30]  W. A. Johnson,et al.  Enhanced Locomotion Caused by Loss of the Drosophila DEG/ENaC Protein Pickpocket1 , 2003, Current Biology.

[31]  S. Grillner The motor infrastructure: from ion channels to neuronal networks , 2003, Nature Reviews Neuroscience.

[32]  J. Fetcho,et al.  Mutations in deadly seven/notch1a Reveal Developmental Plasticity in the Escape Response Circuit , 2003, The Journal of Neuroscience.

[33]  David R. Soll,et al.  Dynamic analysis of larval locomotion in Drosophila chordotonal organ mutants , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[34]  C. Duch,et al.  Stage‐specific activity patterns affect motoneuron axonal retraction and outgrowth during the metamorphosis of Manduca sexta , 2003, The European journal of neuroscience.

[35]  E. Marder,et al.  Dopamine and histamine in the developing stomatogastric system of the lobster Homarus americanus , 2003, The Journal of comparative neurology.

[36]  Elzbieta Jankowska,et al.  Networks of inhibitory and excitatory commissural interneurons mediating crossed reticulospinal actions , 2003, The European journal of neuroscience.

[37]  Ole Kiehn,et al.  Role of EphA4 and EphrinB3 in Local Neuronal Circuits That Control Walking , 2003, Science.

[38]  M. Hedrick,et al.  Gap junction blockade with carbenoxolone differentially affects fictive breathing in larval and adult bullfrogs , 2003, Respiratory Physiology & Neurobiology.

[39]  J. Viemari,et al.  Perinatal maturation of the mouse respiratory rhythm‐generator: in vivo and in vitro studies , 2003, The European journal of neuroscience.

[40]  M. Hanson,et al.  Characterization of the Circuits That Generate Spontaneous Episodes of Activity in the Early Embryonic Mouse Spinal Cord , 2003, The Journal of Neuroscience.

[41]  F. Clarac,et al.  Reversible Disorganization of the Locomotor Pattern after Neonatal Spinal Cord Transection in the Rat , 2003, The Journal of Neuroscience.

[42]  Thomas M. Jessell,et al.  Motor neuron columnar fate imposed by sequential phases of Hox-c activity , 2003, Nature.

[43]  O. Kiehn,et al.  Functional Identification of Interneurons Responsible for Left-Right Coordination of Hindlimbs in Mammals , 2003, Neuron.

[44]  T. Jessell,et al.  Retinoid Receptor Signaling in Postmitotic Motor Neurons Regulates Rostrocaudal Positional Identity and Axonal Projection Pattern , 2003, Neuron.

[45]  E. Carpenter,et al.  Hoxa10 and Hoxd10 coordinately regulate lumbar motor neuron patterning. , 2003, Journal of neurobiology.

[46]  M. Suster,et al.  Targeted expression of tetanus toxin reveals sets of neurons involved in larval locomotion in Drosophila. , 2003, Journal of neurobiology.

[47]  Neurons with distinctive firing patterns, morphology and distribution in laminae V–VII of the neonatal rat lumbar spinal cord , 2003, The European journal of neuroscience.

[48]  J. Weeks,et al.  Steroid-Induced Dendritic Regression Reduces Anatomical Contacts between Neurons during Synaptic Weakening and the Developmental Loss of a Behavior , 2003, The Journal of Neuroscience.

[49]  K. Lewis,et al.  From cells to circuits: development of the zebrafish spinal cord , 2003, Progress in Neurobiology.

[50]  T. Jessell,et al.  Regulation of motor neuron subtype identity by repressor activity of Mnx class homeodomain proteins , 2003, Development.

[51]  T. Graf,et al.  MafB deficiency causes defective respiratory rhythmogenesis and fatal central apnea at birth , 2003, Nature Neuroscience.

[52]  Ole Kiehn,et al.  Mechanisms underlying the noradrenergic modulation of longitudinal coordination during swimming in Xenopus laevis tadpoles , 2003, The European journal of neuroscience.

[53]  Stefan R. Pulver,et al.  Serotonin in the developing stomatogastric system of the lobster, Homarus americanus. , 2003, Journal of neurobiology.

[54]  P. Whelan,et al.  Peptidergic Activation of Locomotor Pattern Generators in the Neonatal Spinal Cord , 2003, The Journal of Neuroscience.

[55]  J. Weeks Thinking globally, acting locally: steroid hormone regulation of the dendritic architecture, synaptic connectivity and death of an individual neuron , 2003, Progress in Neurobiology.

[56]  E. Deneris,et al.  Lmx1b is essential for the development of serotonergic neurons , 2003, Nature Neuroscience.

[57]  S. Arber,et al.  Met Signaling Is Required for Recruitment of Motor Neurons to PEA3-Positive Motor Pools , 2003, Neuron.

[58]  Ole Kiehn,et al.  Synaptic targets of commissural interneurons in the lumbar spinal cord of neonatal rats , 2003, The Journal of comparative neurology.

[59]  M. Bate,et al.  Embryonic Origins of a Motor System:Motor Dendrites Form a Myotopic Mapin Drosophila , 2003, PLoS biology.

[60]  A. Kania,et al.  Topographic Motor Projections in the Limb Imposed by LIM Homeodomain Protein Regulation of Ephrin-A:EphA Interactions , 2003, Neuron.

[61]  H. Wichterle,et al.  A Requirement for Retinoic Acid-Mediated Transcriptional Activation in Ventral Neural Patterning and Motor Neuron Specification , 2003, Neuron.

[62]  J. Greer,et al.  Ontogeny of the Pre-Bötzinger Complex in Perinatal Rats , 2003, The Journal of Neuroscience.

[63]  E. Brustein,et al.  Serotonin patterns locomotor network activity in the developing zebrafish by modulating quiescent periods. , 2003, Journal of neurobiology.

[64]  J. Greer,et al.  Ontogeny of rhythmic motor patterns generated in the embryonic rat spinal cord. , 2003, Journal of neurophysiology.

[65]  T. Jessell,et al.  Genetic Identification of Spinal Interneurons that Coordinate Left-Right Locomotor Activity Necessary for Walking Movements , 2004, Neuron.

[66]  Z. Kaprielian,et al.  Diversity of contralateral commissural projections in the embryonic rodent spinal cord , 2004, The Journal of comparative neurology.

[67]  A. Kania,et al.  A Postmitotic Role for Isl-Class LIM Homeodomain Proteins in the Assignment of Visceral Spinal Motor Neuron Identity , 2004, Neuron.

[68]  M. Goulding How Early Is Firing Required for Wiring? , 2004, Neuron.

[69]  J. Eisen,et al.  Zebrafish and fly Nkx6 proteins have similar CNS expression patterns and regulate motoneuron formation , 2004, Development.

[70]  K. Sillar,et al.  Divergent actions of serotonin receptor activation during fictive swimming in frog embryos , 2004, Journal of Comparative Physiology A.

[71]  Melina E. Hale,et al.  Hox Gene Misexpression and Cell-Specific Lesions Reveal Functionality of Homeotically Transformed Neurons , 2004, The Journal of Neuroscience.

[72]  K. Sillar,et al.  Developmental segregation of spinal networks driving axial‐ and hindlimb‐based locomotion in metamorphosing Xenopus laevis , 2004, The Journal of physiology.

[73]  M. Hatten,et al.  Roof plate and dorsal spinal cord dl1 interneuron development in the dreher mutant mouse. , 2004, Developmental biology.

[74]  M. A. Masino,et al.  Engrailed-1 Expression Marks a Primitive Class of Inhibitory Spinal Interneuron , 2004, The Journal of Neuroscience.

[75]  J. Viemari,et al.  Phox2a Gene, A6 Neurons, and Noradrenaline Are Essential for Development of Normal Respiratory Rhythm in Mice , 2004, The Journal of Neuroscience.

[76]  Yoshihiro Yoshihara,et al.  Pax6 and Engrailed 1 Regulate Two Distinct Aspects of Renshaw Cell Development , 2004, The Journal of Neuroscience.

[77]  M. Hanson,et al.  Normal Patterns of Spontaneous Activity Are Required for Correct Motor Axon Guidance and the Expression of Specific Guidance Molecules , 2004, Neuron.

[78]  Pierre Meyrand,et al.  Multiple spontaneous rhythmic activity patterns generated by the embryonic mouse spinal cord occur within a specific developmental time window. , 2004, Journal of neurophysiology.

[79]  P. Meyrand,et al.  Phylogenetic, ontogenetic and adult adaptive plasticity of rhythmic neural networks: a common neuromodulatory mechanism? , 2004, Journal of Comparative Physiology A.

[80]  Nicholas C. Spitzer,et al.  Activity-dependent homeostatic specification of transmitter expression in embryonic neurons , 2004, Nature.

[81]  M. Goulding,et al.  Tlx3 and Tlx1 are post-mitotic selector genes determining glutamatergic over GABAergic cell fates , 2004, Nature Neuroscience.

[82]  F. Clarac,et al.  The maturation of locomotor networks. , 2004, Progress in brain research.

[83]  Alan Roberts,et al.  Primitive Roles for Inhibitory Interneurons in Developing Frog Spinal Cord , 2004, The Journal of Neuroscience.

[84]  O. Kiehn,et al.  Central Pattern Generators Deciphered by Molecular Genetics , 2004, Neuron.

[85]  P. Whelan,et al.  Modulation of locomotor activity by multiple 5-HT and dopaminergic receptor subtypes in the neonatal mouse spinal cord. , 2004, Journal of neurophysiology.

[86]  L. Griffith,et al.  Electrophysiological and morphological characterization of identified motor neurons in the Drosophila third instar larva central nervous system. , 2004, Journal of neurophysiology.

[87]  Carsten Duch,et al.  Activity Affects Dendritic Shape and Synapse Elimination during Steroid Controlled Dendritic Retraction in Manduca sexta , 2004, The Journal of Neuroscience.

[88]  Sarita Hebbar,et al.  Pruning of motor neuron branches establishes the DLM innervation pattern in Drosophila. , 2004, Journal of neurobiology.

[89]  U. Nissen,et al.  Development of projection‐specific interneurons and projection neurons in the embryonic mouse and rat spinal cord , 2005, The Journal of comparative neurology.