Ship Detection From PolSAR Imagery Using the Complete Polarimetric Covariance Difference Matrix

In this paper, we proposed a complete polarimetric covariance difference matrix [<inline-formula> <tex-math notation="LaTeX">$CP$ </tex-math></inline-formula>]-based algorithm for ship detection in polarimetric synthetic aperture radar (PolSAR) imagery. To calculate [<inline-formula> <tex-math notation="LaTeX">$CP$ </tex-math></inline-formula>], we first developed a scheme to reflect the polarimetric scattering differences between ship pixel (SP) and its neighboring pixels (ISPs) and, then, dividedly accumulated the amplitude and phase differences between SP and ISPs. Compared to the polarimetric covariance difference matrix [<inline-formula> <tex-math notation="LaTeX">$P$ </tex-math></inline-formula>] developed in our earlier work, [<inline-formula> <tex-math notation="LaTeX">$CP$ </tex-math></inline-formula>] effectively overcomes the drawback of the lack of the phase information in [<inline-formula> <tex-math notation="LaTeX">$P$ </tex-math></inline-formula>]. To demonstrate the effectiveness of the proposed algorithm, we applied the [<inline-formula> <tex-math notation="LaTeX">$CP$ </tex-math></inline-formula>]-based ship detection algorithm to four PolSAR data sets, including one UAVSAR L-band data set with 21 ships, two AIRSAR L-band data sets with 11 and 22 ships, respectively, and one Radarsat-2 C-band data set with 8 ships. Experimental results show that: 1) the proposed algorithm can effectively detect ships with high target-to-clutter ratio (TCR) values and 2) [<inline-formula> <tex-math notation="LaTeX">$CP$ </tex-math></inline-formula>] has a better performance than the traditional polarimetric covariance matrix [<inline-formula> <tex-math notation="LaTeX">$C$ </tex-math></inline-formula>] and [<inline-formula> <tex-math notation="LaTeX">$P$ </tex-math></inline-formula>] on ship detection. To be more specific, the average TCR value of the proposed algorithm (23.86 dB) is 6.07 and 7.47 dB higher than PNF<inline-formula> <tex-math notation="LaTeX">$_{C}$ </tex-math></inline-formula> (i.e., the geometrical perturbation-polarimetric notch filter) and RS<inline-formula> <tex-math notation="LaTeX">$_{C}$ </tex-math></inline-formula> (i.e., the reflection symmetry method), respectively.

[1]  Mingsheng Liao,et al.  Ship Detection in SAR Image Based on the Alpha-stable Distribution , 2008, Sensors.

[2]  R. Touzi,et al.  Ship-sea contrast optimization when using polarimetric SARs , 2001, IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217).

[3]  Armando Marino,et al.  A Notch Filter for Ship Detection With Polarimetric SAR Data , 2013, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[4]  M. Yeremy,et al.  Ocean Surveillance with Polarimetric SAR , 2001 .

[5]  Jie Yang,et al.  A New Automatic Ship Detection Method Using $L$-Band Polarimetric SAR Imagery , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[6]  Yuan Yan Tang,et al.  Quaternionic Local Ranking Binary Pattern: A Local Descriptor of Color Images , 2016, IEEE Transactions on Image Processing.

[7]  Tonje Nanette Hannevik Polarisation and mode combinations for ship detection using RADARSAT-2 , 2010, 2010 IEEE International Geoscience and Remote Sensing Symposium.

[8]  D. Crisp,et al.  The State-of-the-Art in Ship Detection in Synthetic Aperture Radar Imagery , 2004 .

[9]  Maurizio Migliaccio,et al.  Analysis of Full and Compact Polarimetric SAR Features Over the Sea Surface , 2016, IEEE Geoscience and Remote Sensing Letters.

[10]  Sheng Gao,et al.  Adaptive Ship Detection in Hybrid-Polarimetric SAR Images Based on the Power–Entropy Decomposition , 2018, IEEE Transactions on Geoscience and Remote Sensing.

[11]  Biao Hou,et al.  Multilayer CFAR Detection of Ship Targets in Very High Resolution SAR Images , 2015, IEEE Geoscience and Remote Sensing Letters.

[12]  Tonje Nanette Hannevik Multi-channel and multi-polarisation ship detection , 2012, 2012 IEEE International Geoscience and Remote Sensing Symposium.

[13]  L.M. Novak,et al.  On the performance of polarimetric target detection algorithms , 1990, IEEE Aerospace and Electronic Systems Magazine.

[14]  Guoman Huang,et al.  On the Use of Cross-Correlation between Volume Scattering and Helix Scattering from Polarimetric SAR Data for the Improvement of Ship Detection , 2016, Remote. Sens..

[15]  Gaosheng Li,et al.  Performance Comparison Between Reflection Symmetry Metric and Product of Multilook Amplitudes for Ship Detection in Dual-Polarization SAR Images , 2017, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[16]  Eric Pottier,et al.  A review of target decomposition theorems in radar polarimetry , 1996, IEEE Trans. Geosci. Remote. Sens..

[17]  Xiaofeng Li,et al.  Polarimetric Analysis of Compact-Polarimetry SAR Architectures for Sea Oil Slick Observation , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[18]  E. Pottier,et al.  Polarimetric Radar Imaging: From Basics to Applications , 2009 .

[19]  P. Vachon,et al.  Improved ship detection with airborne polarimetric SAR data , 2005 .

[20]  Yang Chan-Su,et al.  Comparison of Ship Detection Accuracy Based on Image Contrast with Different Combinations HH- and VV-polarization TerraSAR-X SAR Images , 2017 .

[21]  Haitao Lang,et al.  Four-Component Model-Based Decomposition for Ship Targets Using PolSAR Data , 2017, Remote. Sens..

[22]  Hongwei Liu,et al.  PolSAR Ship Detection Based on Superpixel-Level Scattering Mechanism Distribution Features , 2015, IEEE Geoscience and Remote Sensing Letters.

[23]  Na Wang,et al.  A novel polarimetric SAR ship detection method , 2011, 2011 3rd International Asia-Pacific Conference on Synthetic Aperture Radar (APSAR).

[24]  Irena Hajnsek,et al.  Validating a Notch Filter for Detection of Targets at Sea With ALOS-PALSAR Data: Tokyo Bay , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[25]  Xiaofeng Li,et al.  Automatic Detection of Ships in RADARSAT-1 SAR Imagery , 2001 .

[26]  Daniel R. Fuhrmann,et al.  A CFAR adaptive matched filter detector , 1992 .

[27]  Leslie M. Novak,et al.  Optimal speckle reduction in polarimetric SAR imagery , 1990 .

[28]  M. Migliaccio,et al.  Reflection Symmetry for Polarimetric Observation of Man-Made Metallic Targets at Sea , 2012, IEEE Journal of Oceanic Engineering.

[29]  Tao Zhang,et al.  PolSAR Ship Detection Based on the Polarimetric Covariance Difference Matrix , 2017, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[30]  R. K. Hawkins,et al.  Ship detection and characterization using polarimetric SAR , 2004 .

[31]  Irena Hajnsek,et al.  Inversion of surface parameters from polarimetric SAR , 2003, IEEE Trans. Geosci. Remote. Sens..

[32]  Armando Marino,et al.  Detecting Depolarized Targets Using a New Geometrical Perturbation Filter , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[33]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[34]  Yan Li,et al.  An Improved Generalized Optimization of Polarimetric Contrast Enhancement and Its Application to Ship Detection , 2013, IEICE transactions on communications.

[35]  Y. Yamaguchi,et al.  CS-1-4 Four-Component Scattering Model for Polarimetric SAR Image Decomposition based on Covariance Matrix(CS-1. 電磁波計測・イメージングと波動情報処理技術, エレクトロニクス1) , 2005 .