A fast implicit difference scheme for a new class of time distributed-order and space fractional diffusion equations with variable coefficients

[1]  D. Baleanu,et al.  Space-time fractional Rosenou-Haynam equation: Lie symmetry analysis, explicit solutions and conservation laws , 2018 .

[2]  Dumitru Baleanu,et al.  Lie symmetry analysis, exact solutions and conservation laws for the time fractional Caudrey-Dodd-Gibbon-Sawada-Kotera equation , 2018, Commun. Nonlinear Sci. Numer. Simul..

[3]  Dumitru Baleanu,et al.  On the adaptive sliding mode controller for a hyperchaotic fractional-order financial system , 2018 .

[4]  D. Baleanu,et al.  Lie symmetry analysis, explicit solutions and conservation laws for the space–time fractional nonlinear evolution equations , 2018 .

[5]  D. Baleanu,et al.  Time-fractional Cahn–Allen and time-fractional Klein–Gordon equations: Lie symmetry analysis, explicit solutions and convergence analysis , 2018 .

[6]  Dumitru Baleanu,et al.  Analysis of regularized long-wave equation associated with a new fractional operator with Mittag-Leffler type kernel , 2018 .

[7]  D. Baleanu,et al.  Lie symmetry analysis and explicit solutions for the time fractional generalized Burgers–Huxley equation , 2018, Optical and Quantum Electronics.

[8]  D. Baleanu,et al.  Time Fractional Third-Order Evolution Equation: Symmetry Analysis, Explicit Solutions, and Conservation Laws , 2018 .

[9]  Dumitru Baleanu,et al.  An Efficient Non-standard Finite Difference Scheme for a Class of Fractional Chaotic Systems , 2018 .

[10]  Dumitru Baleanu,et al.  A new analysis of the Fornberg-Whitham equation pertaining to a fractional derivative with Mittag-Leffler-type kernel , 2018 .

[11]  Dumitru Baleanu,et al.  A New Formulation of the Fractional Optimal Control Problems Involving Mittag–Leffler Nonsingular Kernel , 2017, J. Optim. Theory Appl..

[12]  D. Baleanu,et al.  New aspects of the adaptive synchronization and hyperchaos suppression of a financial model , 2017 .

[13]  D. Baleanu,et al.  The Motion of a Bead Sliding on a Wire in Fractional Sense , 2017 .

[14]  Daniele Bertaccini,et al.  Solving mixed classical and fractional partial differential equations using short–memory principle and approximate inverses , 2017, Numerical Algorithms.

[15]  Tingzhu Huang,et al.  Fast permutation preconditioning for fractional diffusion equations , 2016, SpringerPlus.

[16]  Somayeh Mashayekhi,et al.  Numerical solution of distributed order fractional differential equations by hybrid functions , 2016, J. Comput. Phys..

[17]  I. Turner,et al.  An implicit numerical method of a new time distributed-order and two-sided space-fractional advection-dispersion equation , 2016, Numerical Algorithms.

[18]  Wei-Hua Luo,et al.  Quadratic spline collocation method for the time fractional subdiffusion equation , 2016, Appl. Math. Comput..

[19]  Cui-Cui Ji,et al.  Fast Iterative Method with a Second-Order Implicit Difference Scheme for Time-Space Fractional Convection–Diffusion Equation , 2016, J. Sci. Comput..

[20]  Stefano Serra Capizzano,et al.  Spectral analysis and structure preserving preconditioners for fractional diffusion equations , 2016, J. Comput. Phys..

[21]  Ting-Zhu Huang,et al.  A hybridized iterative algorithm of the BiCORSTAB and GPBiCOR methods for solving non-Hermitian linear systems , 2015, Comput. Math. Appl..

[22]  Fawang Liu,et al.  Numerical analysis for the time distributed-order and Riesz space fractional diffusions on bounded domains , 2015 .

[23]  Ting-Zhu Huang,et al.  On k-step CSCS-based polynomial preconditioners for Toeplitz linear systems with application to fractional diffusion equations , 2015, Appl. Math. Lett..

[24]  M. L. Morgado,et al.  Numerical approximation of distributed order reaction-diffusion equations , 2015, J. Comput. Appl. Math..

[25]  Zhi-Zhong Sun,et al.  A fourth-order approximation of fractional derivatives with its applications , 2015, J. Comput. Phys..

[26]  Michael K. Ng,et al.  Preconditioning Techniques for Diagonal-times-Toeplitz Matrices in Fractional Diffusion Equations , 2014, SIAM J. Sci. Comput..

[27]  Neville J. Ford,et al.  A numerical method for the distributed order time-fractional diffusion equation , 2014, ICFDA'14 International Conference on Fractional Differentiation and Its Applications 2014.

[28]  John T. Katsikadelis,et al.  Numerical solution of distributed order fractional differential equations , 2014, J. Comput. Phys..

[29]  Marina Popolizio,et al.  A matrix approach for partial differential equations with Riesz space fractional derivatives , 2013 .

[30]  Siu-Long Lei,et al.  A circulant preconditioner for fractional diffusion equations , 2013, J. Comput. Phys..

[31]  Ting-Zhu Huang,et al.  Strang-type preconditioners for solving fractional diffusion equations by boundary value methods , 2013, J. Comput. Appl. Math..

[32]  R. Gorenflo,et al.  Fundamental solution of a distributed order time-fractional diffusion-wave equation as probability density , 2013 .

[33]  M. Meerschaert,et al.  Numerical methods for solving the multi-term time-fractional wave-diffusion equation , 2012, Fractional calculus & applied analysis.

[34]  K. Burrage,et al.  Analytical solutions for the multi-term time–space Caputo–Riesz fractional advection–diffusion equations on a finite domain , 2012 .

[35]  Ting-Zhu Huang,et al.  DCT- and DST-based splitting methods for Toeplitz systems , 2012, Int. J. Comput. Math..

[36]  Francesco Mainardi,et al.  Fractional Calculus: Some Basic Problems in Continuum and Statistical Mechanics , 2012, 1201.0863.

[37]  Hong Wang,et al.  A fast characteristic finite difference method for fractional advection–diffusion equations , 2011 .

[38]  Zhi-Zhong Sun,et al.  A compact finite difference scheme for the fractional sub-diffusion equations , 2011, J. Comput. Phys..

[39]  Hong Wang,et al.  A direct O(N log2 N) finite difference method for fractional diffusion equations , 2010, J. Comput. Phys..

[40]  Gerard L. G. Sleijpen,et al.  BiCR variants of the hybrid BiCG methods for solving linear systems with nonsymmetric matrices , 2010, J. Comput. Appl. Math..

[41]  Mark M. Meerschaert,et al.  Distributed-order fractional diffusions on bounded domains , 2009, 0912.2521.

[42]  Kai Diethelm,et al.  Numerical analysis for distributed-order differential equations , 2009 .

[43]  Fawang Liu,et al.  New Solution and Analytical Techniques of the Implicit Numerical Method for the Anomalous Subdiffusion Equation , 2008, SIAM J. Numer. Anal..

[44]  Jian Bai,et al.  Fractional-Order Anisotropic Diffusion for Image Denoising , 2007, IEEE Transactions on Image Processing.

[45]  M. Ng Iterative Methods for Toeplitz Systems , 2004 .

[46]  M. Meerschaert,et al.  Finite difference approximations for fractional advection-dispersion flow equations , 2004 .

[47]  J. Klafter,et al.  Distributed-Order Fractional Kinetics , 2004, cond-mat/0401146.

[48]  M. Ng Circulant and skew-circulant splitting methods for Toeplitz systems , 2003 .

[49]  Kharkov,et al.  Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[50]  K. Miller,et al.  An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .

[51]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[52]  G. Strang,et al.  Toeplitz equations by conjugate gradients with circulant preconditioner , 1989 .

[53]  Peter J. Torvik,et al.  Fractional calculus in the transient analysis of viscoelastically damped structures , 1983 .

[54]  Dumitru Baleanu,et al.  A new numerical algorithm for fractional Fitzhugh–Nagumo equation arising in transmission of nerve impulses , 2017 .

[55]  Feng Gao,et al.  General fractional calculus in non-singular power-law kernel applied to model anomalous diffusion phenomena in heat transfer problems , 2017 .

[56]  Xiao-Jun Yang,et al.  General fractional calculus operators containing the generalized Mittag-Leffler functions applied to anomalous relaxation , 2017 .

[57]  J. Katsikadelis The fractional distributed order oscillator. a numerical solution , 2012 .

[58]  Yury Luchko,et al.  BOUNDARY VALUE PROBLEMS FOR THE GENERALIZED TIME-FRACTIONAL DIFFUSION EQUATION OF DISTRIBUTED ORDER , 2009 .

[59]  M. Shitikova,et al.  Applications of Fractional Calculus to Dynamic Problems of Linear and Nonlinear Hereditary Mechanics of Solids , 1997 .