Melanopsin Contributions to Irradiance Coding in the Thalamo-Cortical Visual System

Neurophysiological and anatomical studies identify melanopsin expressing retinal ganglion cells (mRGCs) as a major source of information in the mouse visual system.

[1]  Clifford B. Saper,et al.  A neural mechanism for exacerbation of headache by light , 2010, Nature Neuroscience.

[2]  R. Foster,et al.  Regulation of the mammalian pineal by non-rod, non-cone, ocular photoreceptors. , 1999, Science.

[3]  S. Hattar,et al.  Rods-cones and melanopsin detect light and dark to modulate sleep independent of image formation , 2008, Proceedings of the National Academy of Sciences.

[4]  N. Mrosovsky,et al.  Learned arbitrary responses to light in mice without rods or cones , 2002, Naturwissenschaften.

[5]  K. Yau,et al.  Photon capture and signalling by melanopsin retinal ganglion cells , 2008, Nature.

[6]  C. Allen,et al.  The light‐activated signaling pathway in SCN‐projecting rat retinal ganglion cells , 2006, The European journal of neuroscience.

[7]  Kwoon Y. Wong,et al.  Synaptic influences on rat ganglion‐cell photoreceptors , 2007, The Journal of physiology.

[8]  H. Wässle,et al.  Receptive field properties of ON- and OFF-ganglion cells in the mouse retina , 2009, Visual Neuroscience.

[9]  Izzo,et al.  SUPPRESSION OF MELATONIN SECRETION IN SOME BLIND PATIENTS BY EXPOSURE TO BRIGHT LIGHT , 2001 .

[10]  H. Knau,et al.  Thresholds for detecting slowly changing Ganzfeld luminances. , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[11]  K. Donner,et al.  In search of the visual pigment template , 2000, Visual Neuroscience.

[12]  J. Konsman The mouse brain in stereotaxic coordinates Second Edition (Deluxe) By Paxinos G. and Franklin, K.B.J., Academic Press, New York, 2001, ISBN 0-12-547637-X , 2003, Psychoneuroendocrinology.

[13]  T. Badea,et al.  Melanopsin cells are the principal conduits for rod–cone input to non-image-forming vision , 2008, Nature.

[14]  A. Logvinenko Does luminance contrast determine lightness? , 2005, Spatial vision.

[15]  J. Hannibal,et al.  Target areas innervated by PACAP-immunoreactive retinal ganglion cells , 2004, Cell and Tissue Research.

[16]  R. Foster,et al.  Regulation of mammalian circadian behavior by non-rod, non-cone, ocular photoreceptors. , 1999, Science.

[17]  Robert J. Lucas,et al.  Characterization of an ocular photopigment capable of driving pupillary constriction in mice , 2001, Nature Neuroscience.

[18]  Sturla Molden,et al.  Tracheotomy improves experiment success rate in mice during urethane anesthesia and stereotaxic surgery , 2009, Journal of Neuroscience Methods.

[19]  Satchidananda Panda,et al.  Reciprocity between phase shifts and amplitude changes in the mammalian circadian clock , 2007, Proceedings of the National Academy of Sciences.

[20]  T. Bonhoeffer,et al.  Mapping Retinotopic Structure in Mouse Visual Cortex with Optical Imaging , 2002, The Journal of Neuroscience.

[21]  Ji-Jie Pang,et al.  Synaptic circuitry mediating light-evoked signals in dark-adapted mouse retina , 2004, Vision Research.

[22]  B. Roska,et al.  Local Retinal Circuits of Melanopsin-Containing Ganglion Cells Identified by Transsynaptic Viral Tracing , 2007, Current Biology.

[23]  I. Thompson,et al.  Quantitative characterization of visual response properties in the mouse dorsal lateral geniculate nucleus. , 2003, Journal of neurophysiology.

[24]  M. Moseley,et al.  Short-Wavelength Light Sensitivity of Circadian, Pupillary, and Visual Awareness in Humans Lacking an Outer Retina , 2007, Current Biology.

[25]  Ying Zheng,et al.  Spectroscopic Analysis of Changes in Remitted Illumination: The Response to Increased Neural Activity in Brain , 1999, NeuroImage.

[26]  Samer Hattar,et al.  Central projections of melanopsin‐expressing retinal ganglion cells in the mouse , 2006, The Journal of comparative neurology.

[27]  L. Pinto,et al.  Response properties of ganglion cells in the isolated mouse retina , 1993, Visual Neuroscience.

[28]  B. Rusak,et al.  Photic responses of geniculo-hypothalamic tract neurons in the Syrian hamster , 1989, Visual Neuroscience.

[29]  Glen T. Prusky,et al.  Melanopsin-Expressing Retinal Ganglion-Cell Photoreceptors: Cellular Diversity and Role in Pattern Vision , 2010, Neuron.

[30]  J P Changeux,et al.  Requirement of the nicotinic acetylcholine receptor β2 subunit for the anatomical and functional development of the visual system , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[31]  J. Pokorny,et al.  Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN , 2005, Nature.

[32]  G. E. Pickard,et al.  Melanopsin retinal ganglion cells receive bipolar and amacrine cell synapses , 2003, The Journal of comparative neurology.

[33]  C. Levelt,et al.  Screening mouse vision with intrinsic signal optical imaging , 2007, The European journal of neuroscience.

[34]  Jeremy Nathans,et al.  Genetically-Directed, Cell Type-Specific Sparse Labeling for the Analysis of Neuronal Morphology , 2008, PloS one.

[35]  Satchidananda Panda,et al.  Melanopsin Is Required for Non-Image-Forming Photic Responses in Blind Mice , 2003, Science.

[36]  K. Yau,et al.  Diminished Pupillary Light Reflex at High Irradiances in Melanopsin-Knockout Mice , 2003, Science.

[37]  George Paxinos,et al.  The Mouse Brain in Stereotaxic Coordinates , 2001 .

[38]  Ian Q. Whishaw,et al.  A reaffirmation of the retrosplenial contribution to rodent navigation: reviewing the influences of lesion, strain, and task , 2004, Neuroscience & Biobehavioral Reviews.

[39]  Satchidananda Panda,et al.  Inducible Ablation of Melanopsin-Expressing Retinal Ganglion Cells Reveals Their Central Role in Non-Image Forming Visual Responses , 2008, PloS one.

[40]  Russell G Foster,et al.  The acute light-induction of sleep is mediated by OPN4-based photoreception , 2008, Nature Neuroscience.

[41]  Robert B. Barlow,et al.  Brightness sensation in a ganzfeld , 1976, Vision Research.

[42]  D. Baylor,et al.  The photocurrent, noise and spectral sensitivity of rods of the monkey Macaca fascicularis. , 1984, The Journal of physiology.

[43]  Jun Lu,et al.  A Broad Role for Melanopsin in Nonvisual Photoreception , 2003, The Journal of Neuroscience.

[44]  M. McCourt,et al.  Coming to terms with lightness and brightness: effects of stimulus configuration and instructions on brightness and lightness judgments. , 2008, Journal of vision.

[45]  A. Grinvald,et al.  Interactions Between Electrical Activity and Cortical Microcirculation Revealed by Imaging Spectroscopy: Implications for Functional Brain Mapping , 1996, Science.

[46]  J. Pérez-León,et al.  Synaptic inputs to retinal ganglion cells that set the circadian clock , 2006, The European journal of neuroscience.

[47]  Caiying Guo,et al.  Z/EG, a double reporter mouse line that expresses enhanced green fluorescent protein upon cre‐mediated excision , 2000, Genesis.

[48]  C. Lobe,et al.  Z/AP, a double reporter for cre-mediated recombination. , 1999, Developmental biology.

[49]  L. Arckens,et al.  Identification and localization of functional subdivisions in the visual cortex of the adult mouse , 2009, The Journal of comparative neurology.

[50]  Stephen D. Van Hooser,et al.  Receptive field properties and laminar organization of lateral geniculate nucleus in the gray squirrel (Sciurus carolinensis). , 2003, Journal of neurophysiology.

[51]  K. Yau,et al.  Calcium feedback and sensitivity regulation in primate rods , 1991, The Journal of general physiology.

[52]  R. Douglas,et al.  Behavioral assessment of visual acuity in mice and rats , 2000, Vision Research.

[53]  Patrick R Hof,et al.  Neurofilament protein and neuronal activity markers define regional architectonic parcellation in the mouse visual cortex. , 2007, Cerebral cortex.

[54]  W. Levick,et al.  Sustained and transient neurones in the cat's retina and lateral geniculate nucleus , 1971, The Journal of physiology.

[55]  K. Fujii,et al.  Visualization for the analysis of fluid motion , 2005, J. Vis..

[56]  D. Baylor,et al.  Spectral sensitivity of single cones in the retina of Macaca fascicularis , 1984, Nature.

[57]  Edward N. Pugh,et al.  Physiological Features of the S- and M-cone Photoreceptors of Wild-type Mice from Single-cell Recordings , 2006, The Journal of general physiology.

[58]  L. P. Morin,et al.  Targeted Destruction of Photosensitive Retinal Ganglion Cells with a Saporin Conjugate Alters the Effects of Light on Mouse Circadian Rhythms , 2008, PloS one.

[59]  R. E. Harrington Effect of color temperature on apparent brightness. , 1954, Journal of the Optical Society of America.

[60]  G. E. Pickard,et al.  Two types of melanopsin retinal ganglion cell differentially innervate the hypothalamic suprachiasmatic nucleus and the olivary pretectal nucleus , 2008, The European journal of neuroscience.

[61]  R. Marrocco Possible neural basis of brighness magnitude estimations , 1975, Brain Research.

[62]  D. Berson,et al.  Phototransduction by Retinal Ganglion Cells That Set the Circadian Clock , 2002, Science.

[63]  Hiroshi Momiji,et al.  Distinct Contributions of Rod, Cone, and Melanopsin Photoreceptors to Encoding Irradiance , 2010, Neuron.

[64]  R. Lucas,et al.  Melanopsin and inner retinal photoreception , 2009, Cellular and Molecular Life Sciences.

[65]  P. Kofuji,et al.  Functional and Morphological Differences among Intrinsically Photosensitive Retinal Ganglion Cells , 2009, The Journal of Neuroscience.

[66]  J. Olavarria,et al.  Pattern of extrastriate visual areas connecting reciprocally with striate cortex in the mouse , 1982, Experimental Neurology.

[67]  N. Mangini,et al.  Retinotopic organization of striate and extrastriate visual cortex in the mouse , 1980, The Journal of comparative neurology.

[68]  P. R. Boyce,et al.  A field study of illuminance reduction , 2006 .

[69]  J. Hurley,et al.  Scotopic and Photopic Visual Thresholds and Spatial and Temporal Discrimination Evaluated by Behavior of Mice in a Water Maze† , 2006, Photochemistry and photobiology.

[70]  Gerald H. Jacobs,et al.  Genetically engineered mice with an additional class of cone photoreceptors: Implications for the evolution of color vision , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[71]  G. Paxinos,et al.  Comprar The Mouse Brain in Stereotaxic Coordinates, The coronal plates and diagrams Compact, 3rd Edition | Keith Franklin | 9780123742445 | Academic Press , 2008 .

[72]  T. Holy,et al.  Physiologic Diversity and Development of Intrinsically Photosensitive Retinal Ganglion Cells , 2005, Neuron.

[73]  G. Fein,et al.  Photopic luminance does not always predict perceived room brightness , 1990 .

[74]  G. Fain,et al.  Modulation of Phosphodiesterase6 Turnoff during Background Illumination in Mouse Rod Photoreceptors , 2008, The Journal of Neuroscience.

[75]  D. A. Burkhardt,et al.  Light adaptation and photopigment bleaching in cone photoreceptors in situ in the retina of the turtle , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.