Novel implementation of memristive systems for data encryption and obfuscation

With the rise of big data handling, new solutions are required to drive cryptographic algorithms for maintaining data security. Here, we exploit the nonvolatile, nonlinear resistance change in BiFeO3 memristors [Shuai et al., J. Appl. Phys. 109, 124117 (2011)] by applying a voltage for the generation of second and higher harmonics and develop a new memristor-based encoding system from it to encrypt and obfuscate data. It is found that a BiFeO3 memristor in high and low resistance state can be used to generate two clearly distinguishable sets of second and higher harmonics as recently predicted theoretically [Cohen et al., Appl. Phys. Lett. 100, 133109 (2012)]. The computed autocorrelation of encrypted data using higher harmonics generated by a BiFeO3 memristor shows that the encoded data distribute randomly.

[1]  Qunying Huang,et al.  Spatial Cloud Computing: A Practical Approach , 2013 .

[2]  R. Dittmann,et al.  Impact of Defect Distribution on Resistive Switching Characteristics of Sr2TiO4 Thin Films , 2010, Advanced materials.

[3]  S. Long,et al.  Nonvolatile resistive switching memory utilizing gold nanocrystals embedded in zirconium oxide , 2007 .

[4]  J. Van Leeuwen,et al.  Handbook of theoretical computer science - Part A: Algorithms and complexity; Part B: Formal models and semantics , 1990 .

[5]  Y. Pershin,et al.  Second and higher harmonics generation with memristive systems , 2012, 1202.4727.

[6]  Run-Wei Li,et al.  Nonvolatile resistive switching in metal/La-doped BiFeO3/Pt sandwiches , 2010, Nanotechnology.

[7]  J Joshua Yang,et al.  Memristive devices for computing. , 2013, Nature nanotechnology.

[8]  Mark Ciampa Security+ Coursenotes for Ciampa's Security+ Guide to Network Security Fundamentals , 2011 .

[9]  Jan van Leeuwen,et al.  Handbook of Theoretical Computer Science, Vol. A: Algorithms and Complexity , 1994 .

[10]  Huibin Lu,et al.  Switchable diode effect and ferroelectric resistive switching in epitaxial BiFeO3 thin films , 2011 .

[11]  Gregory S. Snider,et al.  ‘Memristive’ switches enable ‘stateful’ logic operations via material implication , 2010, Nature.

[12]  Zhigang Zeng,et al.  Exponential synchronization of memristor-based recurrent neural networks with time delays , 2011, Neurocomputing.

[13]  M. Pickett,et al.  A memristor-based nonvolatile latch circuit , 2010, Nanotechnology.

[14]  R. Waser,et al.  Nanoionics-based resistive switching memories. , 2007, Nature materials.

[15]  J. Yang,et al.  A Family of Electronically Reconfigurable Nanodevices , 2009 .

[16]  Bharathwaj Muthuswamy,et al.  Memristor-Based Chaotic Circuits , 2009 .

[17]  M. Pickett,et al.  A scalable neuristor built with Mott memristors. , 2013, Nature materials.

[18]  Warren Robinett,et al.  Memristor-CMOS hybrid integrated circuits for reconfigurable logic. , 2009, Nano letters.

[19]  Wei Yang Lu,et al.  Nanoscale memristor device as synapse in neuromorphic systems. , 2010, Nano letters.

[20]  M. Sahimi,et al.  Electric currents in networks of interconnected memristors. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  Zhong Qi-Shui,et al.  Fuzzy Modeling and Impulsive Control of a Memristor-Based Chaotic System , 2010 .

[22]  Narayan Srinivasa,et al.  A functional hybrid memristor crossbar-array/CMOS system for data storage and neuromorphic applications. , 2012, Nano letters.

[23]  M. Okuyama,et al.  Prominent ferroelectricity of BiFeO3 thin films prepared by pulsed-laser deposition , 2003 .

[24]  G. Nolan,et al.  Cloud and heterogeneous computing solutions exist today for the emerging big data problems in biology , 2011, Nature Reviews Genetics.

[25]  Heidemarie Schmidt,et al.  Nonvolatile bipolar resistive switching in Au/BiFeO3/Pt , 2011 .

[26]  F. Zhuge,et al.  Resistance switching in polycrystalline BiFeO3 thin films , 2010 .

[27]  Will Venters,et al.  A critical review of cloud computing: researching desires and realities , 2012, J. Inf. Technol..

[28]  Frederick T. Chen,et al.  Unipolar resistive switching characteristics of ZnO thin films for nonvolatile memory applications , 2008 .

[29]  Yuriy V. Pershin,et al.  Memory effects in complex materials and nanoscale systems , 2010, 1011.3053.

[30]  Jae Hyuck Jang,et al.  Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. , 2010, Nature nanotechnology.