Genetics of Cryptococcus neoformans.

Cryptococcus neoformans is a pathogenic fungus that primarily afflicts immunocompromised patients, infecting the central nervous system to cause meningoencephalitis that is uniformly fatal if untreated. C. neoformans is a basidiomycetous fungus with a defined sexual cycle that has been linked to differentiation and virulence. Recent advances in classical and molecular genetic approaches have allowed molecular descriptions of the pathways that control cell type and virulence. An ongoing genome sequencing project promises to reveal much about the evolution of this human fungal pathogen into three distinct varieties or species. C. neoformans shares features with both model ascomycetous yeasts (Saccharomyces cerevisiae, Schizosaccharomyces pombe) and basidiomycetous pathogens and mushrooms (Ustilago maydis, Coprinus cinereus, Schizophyllum commune), yet ongoing studies reveal unique features associated with virulence and the arrangement of the mating type locus. These advances have catapulted C. neoformans to center stage as a model of both fungal pathogenesis and the interesting approaches to life that the kingdom of fungi has adopted.

[1]  J. Heitman,et al.  Ras1 controls pheromone expression and response during mating in Cryptococcus neoformans. , 2003, Fungal genetics and biology : FG & B.

[2]  J. Heitman,et al.  Mating-Type Locus of Cryptococcus neoformans: a Step in the Evolution of Sex Chromosomes , 2002, Eukaryotic Cell.

[3]  Kristin L. Tangen,et al.  Physical maps for genome analysis of serotype A and D strains of the fungal pathogen Cryptococcus neoformans. , 2002, Genome research.

[4]  P. R. Kraus,et al.  A PCR-based strategy to generate integrative targeting alleles with large regions of homology. , 2002, Microbiology.

[5]  J. Heitman,et al.  The Gα Protein Gpa2 Controls Yeast Differentiation by Interacting with Kelch Repeat Proteins that Mimic Gβ Subunits , 2002 .

[6]  J. Heitman,et al.  Protein Kinase A Operates a Molecular Switch That Governs Yeast Pseudohyphal Differentiation , 2002, Molecular and Cellular Biology.

[7]  B. Wickes,et al.  Molecular Analysis of CPRα, a MATα-Specific Pheromone Receptor Gene of Cryptococcus neoformans , 2002, Eukaryotic Cell.

[8]  J. Heitman,et al.  Pheromones Stimulate Mating and Differentiation via Paracrine and Autocrine Signaling in Cryptococcus neoformans , 2002, Eukaryotic Cell.

[9]  J. Heitman,et al.  Cryptococcus neoformans as a Model Fungal Pathogen , 2002 .

[10]  J. Heitman,et al.  Mating-Type-Specific and Nonspecific PAK Kinases Play Shared and Divergent Roles in Cryptococcus neoformans , 2002, Eukaryotic Cell.

[11]  Jianping Xu Mitochondrial DNA polymorphisms in the human pathogenic fungus Cryptococcus neoformans , 2002, Current Genetics.

[12]  Daniel R. Richards,et al.  Dissecting the architecture of a quantitative trait locus in yeast , 2002, Nature.

[13]  Jianping Xu,et al.  Geographic Distribution of Mating Type Alleles of Cryptococcus neoformans in Four Areas of the United States , 2002, Journal of Clinical Microbiology.

[14]  Jianmin Fu,et al.  Isolation and characterization of the Cryptococcus neoformans MATa pheromone gene. , 2002, Genetics.

[15]  J. Heitman,et al.  Adenylyl Cyclase Functions Downstream of the Gα Protein Gpa1 and Controls Mating and Pathogenicity of Cryptococcus neoformans , 2002, Eukaryotic Cell.

[16]  T. Doering,et al.  RNA interference in the pathogenic fungus Cryptococcus neoformans. , 2002, Genetics.

[17]  A. Casadevall,et al.  Cryptococcus neoformans interactions with amoebae suggest an explanation for its virulence and intracellular pathogenic strategy in macrophages , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[18]  M. Snyder,et al.  A filamentous growth response mediated by the yeast mating pathway. , 2001, Genetics.

[19]  P. Williamson,et al.  Multiple virulence factors of Cryptococcus neoformans are dependent on VPH1 , 2001, Molecular microbiology.

[20]  B. Wickes,et al.  Origin of Cryptococcus neoformans var.neoformans Diploid Strains , 2001, Journal of Clinical Microbiology.

[21]  T. Doering,et al.  Functional cloning and characterization of a UDP- glucuronic acid decarboxylase: The pathogenic fungus Cryptococcus neoformans elucidates UDP-xylose synthesis , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[22]  U. Himmelreich,et al.  Cas1p is a membrane protein necessary for the O‐acetylation of the Cryptococcus neoformans capsular polysaccharide , 2001, Molecular microbiology.

[23]  U. Goodenough,et al.  Chloroplast DNA methylation and inheritance in Chlamydomonas. , 2001, Genes & development.

[24]  M. Montagna,et al.  Isolation of a Cryptococcus neoformans serotype A MATa strain from the Italian environment. , 2001, Medical mycology.

[25]  L. Vaillancourt,et al.  Changes in mate recognition through alterations of pheromones and receptors in the multisexual mushroom fungus Schizophyllum commune. , 2001, Genetics.

[26]  K. Nishimura,et al.  Atypical Cryptococcus neoformans isolate from an HIV-infected patient in Brazil. , 2001, Nihon Ishinkin Gakkai zasshi = Japanese journal of medical mycology.

[27]  T. Doering,et al.  Spatial and temporal sequence of capsule construction in Cryptococcus neoformans , 2001, Molecular microbiology.

[28]  Jiahuai Han,et al.  Metaxin is required for tumor necrosis factor‐induced cell death , 2001, EMBO reports.

[29]  D. Tzamarias,et al.  Sfl1 functions via the co-repressor Ssn6-Tup1 and the cAMP-dependent protein kinase Tpk2. , 2001, Journal of molecular biology.

[30]  J. Heitman,et al.  Two cyclophilin A homologs with shared and distinct functions important for growth and virulence of Cryptococcus neoformans , 2001, EMBO reports.

[31]  J. Heitman,et al.  Cyclic AMP-Dependent Protein Kinase Controls Virulence of the Fungal Pathogen Cryptococcus neoformans , 2001, Molecular and Cellular Biology.

[32]  J. Heitman,et al.  Conserved cAMP signaling cascades regulate fungal development and virulence. , 2001, FEMS microbiology reviews.

[33]  A. Casadevall,et al.  Serologic evidence for Cryptococcus neoformans infection in early childhood. , 2001, Pediatrics.

[34]  W. Hop,et al.  Hybrid genotypes in the pathogenic yeast Cryptococcus neoformans. , 2001, Microbiology.

[35]  T. Sorrell,et al.  Cryptococcus neoformans variety gattii. , 2001, Medical mycology.

[36]  B. Wickes,et al.  The Cryptococcus neoformans STE11α gene is similar to other fungal mitogen‐activated protein kinase kinase kinase (MAPKKK) genes but is mating type specific , 2001, Molecular microbiology.

[37]  J. Heitman,et al.  Calcineurin is required for hyphal elongation during mating and haploid fruiting in Cryptococcus neoformans , 2001, The EMBO journal.

[38]  J. Lodge,et al.  Identification of virulence mutants of the fungal pathogen Cryptococcus neoformans using signature-tagged mutagenesis. , 2001, Genetics.

[39]  M. Cushion,et al.  The ste3 pheromone receptor gene of Pneumocystis carinii is surrounded by a cluster of signal transduction genes. , 2001, Genetics.

[40]  K. Kwon-Chung,et al.  The second STE12 homologue of Cryptococcus neoformans is MATa-specific and plays an important role in virulence , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[41]  G. Cox,et al.  A new dominant selectable marker for use in Cryptococcus neoformans. , 2001, Medical mycology.

[42]  J. Heitman,et al.  Calcineurin regulatory subunit is essential for virulence and mediates interactions with FKBP12–FK506 in Cryptococcus neoformans , 2001, Molecular microbiology.

[43]  J. Heitman,et al.  Serotype AD Strains of Cryptococcus neoformans Are Diploid or Aneuploid and Are Heterozygous at the Mating-Type Locus , 2001, Infection and Immunity.

[44]  A. Casadevall,et al.  Extracellular phospholipase activity is a virulence factor for Cryptococcus neoformans , 2001, Molecular microbiology.

[45]  C. Genco,et al.  Emerging strategies in microbial haem capture , 2001, Molecular microbiology.

[46]  J. Heitman,et al.  Identification of the MATa mating-type locus of Cryptococcus neoformans reveals a serotype A MATa strain thought to have been extinct. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[47]  J. Heitman,et al.  Signal Transduction Cascades Regulating Fungal Development and Virulence , 2000, Microbiology and Molecular Biology Reviews.

[48]  J. Heitman,et al.  Characterization of the MFα pheromone of the human fungal pathogen Cryptococcus neoformans , 2000, Molecular microbiology.

[49]  T. Doering How does Cryptococcus get its coat? , 2000, Trends in microbiology.

[50]  T. G. Mitchell,et al.  Development and characterization of a genetic linkage map of Cryptococcus neoformans var. neoformans using amplified fragment length polymorphisms and other markers. , 2000, Fungal genetics and biology : FG & B.

[51]  B. Wickes,et al.  Mapping of the Cryptococcus neoformans MATα Locus: Presence of Mating Type-Specific Mitogen-Activated Protein Kinase Cascade Homologs , 2000, Journal of bacteriology.

[52]  Joseph Heitman,et al.  Sok2 Regulates Yeast Pseudohyphal Differentiation via a Transcription Factor Cascade That Regulates Cell-Cell Adhesion , 2000, Molecular and Cellular Biology.

[53]  J. Derisi,et al.  Plasma membrane compartmentalization in yeast by messenger RNA transport and a septin diffusion barrier. , 2000, Science.

[54]  T. G. Mitchell,et al.  Multiple gene genealogies reveal recent dispersion and hybridization in the human pathogenic fungus Cryptococcus neoformans , 2000, Molecular ecology.

[55]  C. S. Hoffman,et al.  Glucose monitoring in fission yeast via the Gpa2 galpha, the git5 Gbeta and the git3 putative glucose receptor. , 2000, Genetics.

[56]  R. Chin,et al.  Pulmonary cryptococcosis in the immunocompetent host. Therapy with oral fluconazole: a report of four cases and a review of the literature. , 2000, Chest.

[57]  A. Casadevall,et al.  Melanin and virulence in Cryptococcus neoformans. , 2000, Current opinion in microbiology.

[58]  J. Heitman,et al.  Identification and characterization of a highly conserved calcineurin binding protein, CBP1/calcipressin, in Cryptococcus neoformans , 2000, The EMBO journal.

[59]  A. Casadevall,et al.  Melanisation of Cryptococcus neoformans in human brain tissue , 2000, The Lancet.

[60]  P. Mondon,et al.  A novel episomal shuttle vector for transformation of Cryptococcus neoformans with the ccdB gene as a positive selection marker in bacteria. , 2000, FEMS microbiology letters.

[61]  A. Casadevall,et al.  Synthesis of Polymerized Melanin by Cryptococcus neoformans in Infected Rodents , 2000, Infection and Immunity.

[62]  T. G. Mitchell,et al.  Uniparental Mitochondrial Transmission in Sexual Crosses in Cryptococcus neoformans , 2000, Current Microbiology.

[63]  A. Burt PERSPECTIVE: SEX, RECOMBINATION, AND THE EFFICACY OF SELECTION—WAS WEISMANN RIGHT? , 2000, Evolution; international journal of organic evolution.

[64]  J. Heitman,et al.  Diploid strains of the pathogenic basidiomycete Cryptococcus neoformans are thermally dimorphic. , 2000, Fungal genetics and biology : FG & B.

[65]  J. Heitman,et al.  RAS1 regulates filamentation, mating and growth at high temperature of Cryptococcus neoformans , 2000, Molecular microbiology.

[66]  B. Wickes,et al.  Cryptococcus neoformans STE12α Regulates Virulence but Is Not Essential for Mating , 2000, The Journal of experimental medicine.

[67]  T. Hughes,et al.  Signaling and circuitry of multiple MAPK pathways revealed by a matrix of global gene expression profiles. , 2000, Science.

[68]  J. Heitman,et al.  Comparison of the Roles of Calcineurin in Physiology and Virulence in Serotype D and Serotype A Strains ofCryptococcus neoformans , 2000, Infection and Immunity.

[69]  A. Casadevall,et al.  Urease as a Virulence Factor in Experimental Cryptococcosis , 2000, Infection and Immunity.

[70]  A. Casadevall,et al.  Persistent Cryptococcus neoformansPulmonary Infection in the Rat Is Associated with Intracellular Parasitism, Decreased Inducible Nitric Oxide Synthase Expression, and Altered Antibody Responsiveness to Cryptococcal Polysaccharide , 2000, Infection and Immunity.

[71]  J. Heitman,et al.  Gene disruption by biolistic transformation in serotype D strains of Cryptococcus neoformans. , 2000, Fungal genetics and biology : FG & B.

[72]  J. Heitman,et al.  The G protein-coupled receptor gpr1 is a nutrient sensor that regulates pseudohyphal differentiation in Saccharomyces cerevisiae. , 2000, Genetics.

[73]  J. Heitman,et al.  The G-Protein β Subunit GPB1 Is Required for Mating and Haploid Fruiting in Cryptococcus neoformans , 2000, Molecular and Cellular Biology.

[74]  J. Lodge,et al.  Development of Positive Selectable Markers for the Fungal Pathogen Cryptococcus neoformans , 2000, Clinical Diagnostic Laboratory Immunology.

[75]  Arturo Casadevall,et al.  The Cryptococcus neoformans genome sequencing project , 1999, Mycopathologia.

[76]  J. Heitman,et al.  The STE12alpha homolog is required for haploid filamentation but largely dispensable for mating and virulence in Cryptococcus neoformans. , 1999, Genetics.

[77]  M. Krockenberger,et al.  Asymptomatic carriage of Cryptococcus neoformans in the nasal cavity of the koala (Phascolarctos cinereus). , 1999, Medical mycology.

[78]  J. Heitman,et al.  On the origins of congenic MATalpha and MATa strains of the pathogenic yeast Cryptococcus neoformans. , 1999, Fungal genetics and biology : FG & B.

[79]  F. Dromer,et al.  Epidemiological Evidence for Dormant Cryptococcus neoformans Infection , 1999, Journal of Clinical Microbiology.

[80]  K. Kwon-Chung,et al.  Isolation, Characterization, and Localization of a Capsule-Associated Gene, CAP10, of Cryptococcus neoformans , 1999, Journal of bacteriology.

[81]  M. Krockenberger,et al.  Presence of α and a Mating Types in Environmental and Clinical Collections of Cryptococcus neoformans var. gattii Strains from Australia , 1999, Journal of Clinical Microbiology.

[82]  Christina M. Hull,et al.  Identification of a mating type-like locus in the asexual pathogenic yeast Candida albicans. , 1999, Science.

[83]  J. Heitman,et al.  Signal transduction cascades regulating mating, filamentation, and virulence in Cryptococcus neoformans. , 1999, Current opinion in microbiology.

[84]  E S Lander,et al.  Ploidy regulation of gene expression. , 1999, Science.

[85]  F. Lottspeich,et al.  Environmental Signals Controlling Sexual Development of the Corn Smut Fungus Ustilago maydis through the Transcriptional Regulator Prf1 , 1999, Plant Cell.

[86]  J. Heitman,et al.  Cyclic AMP-Dependent Protein Kinase Regulates Pseudohyphal Differentiation in Saccharomyces cerevisiae , 1999, Molecular and Cellular Biology.

[87]  J. Heitman,et al.  Rapamycin Antifungal Action Is Mediated via Conserved Complexes with FKBP12 and TOR Kinase Homologs inCryptococcus neoformans , 1999, Molecular and Cellular Biology.

[88]  J. D. de Winde,et al.  A Saccharomyces cerevisiae G‐protein coupled receptor, Gpr1, is specifically required for glucose activation of the cAMP pathway during the transition to growth on glucose , 1999, Molecular microbiology.

[89]  J. Heitman,et al.  Molecular analysis of the Cryptococcus neoformans ADE2 gene, a selectable marker for transformation and gene disruption. , 1999, Fungal genetics and biology : FG & B.

[90]  S. Dowell,et al.  A constitutively active G‐protein‐coupled receptor causes mating self‐compatibility in the mushroom Coprinus , 1999, The EMBO journal.

[91]  G. Fink,et al.  Crosstalk between the Ras2p-controlled mitogen-activated protein kinase and cAMP pathways during invasive growth of Saccharomyces cerevisiae. , 1999, Molecular biology of the cell.

[92]  J. Heitman,et al.  Topoisomerase I is essential in Cryptococcus neoformans: role In pathobiology and as an antifungal target. , 1999, Genetics.

[93]  J. Heitman,et al.  Cryptococcus neoformans Differential Gene Expression Detected In Vitro and In Vivo with Green Fluorescent Protein , 1999, Infection and Immunity.

[94]  W. Powderly,et al.  Pulmonary cryptococcosis in patients without HIV infection. , 1999, Chest.

[95]  J. Perfect,et al.  A Glucan Synthase FKS1 Homolog inCryptococcus neoformans Is Single Copy and Encodes an Essential Function , 1999, Journal of bacteriology.

[96]  A. Casadevall,et al.  Melanization of Cryptococcus neoformansin Murine Infection , 1999, Molecular and Cellular Biology.

[97]  S. Tantimavanich,et al.  Pathogenicity of basidiospores of Filobasidiella neoformans var. neoformans. , 1998, Medical mycology.

[98]  G. Fink,et al.  The three yeast A kinases have specific signaling functions in pseudohyphal growth. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[99]  K. Kwon-Chung,et al.  Construction of stable episomes in Cryptococcus neoformans , 1998, Current Genetics.

[100]  J. D. de Winde,et al.  Involvement of distinct G‐proteins, Gpa2 and Ras, in glucose‐ and intracellular acidification‐induced cAMP signalling in the yeast Saccharomyces cerevisiae , 1998, The EMBO journal.

[101]  K. Kwon-Chung,et al.  Isolation of the Third Capsule-Associated Gene,CAP60, Required for Virulence in Cryptococcus neoformans , 1998, Infection and Immunity.

[102]  J. Hirsch,et al.  GPR1 encodes a putative G protein‐coupled receptor that associates with the Gpa2p Gα subunit and functions in a Ras‐independent pathway , 1998, The EMBO journal.

[103]  L. Casselton,et al.  Molecular Genetics of Mating Recognition in Basidiomycete Fungi , 1998, Microbiology and Molecular Biology Reviews.

[104]  J. Heitman,et al.  Cryptococcus neoformans mating and virulence are regulated by the G-protein alpha subunit GPA1 and cAMP. , 1997, Genes & development.

[105]  J. Heitman,et al.  Yeast pseudohyphal growth is regulated by GPA2, a G protein α homolog , 1997 .

[106]  G. Macino,et al.  Blue light regulation in Neurospora crassa. , 1997, Fungal genetics and biology : FG & B.

[107]  B. Wickes,et al.  The Cryptococcus neoformans STE12α gene: a putative Saccharomyces cerevisiae STE12 homologue that is mating type specific , 1997, Molecular microbiology.

[108]  Gerald R. Fink,et al.  MAP Kinases with Distinct Inhibitory Functions Impart Signaling Specificity during Yeast Differentiation , 1997, Cell.

[109]  L. Bardwell,et al.  Inhibitory and activating functions for MAPK Kss1 in the S. cerevisiae filamentous- growth signalling pathway , 1997, Nature.

[110]  A. van Belkum,et al.  Variability of karyotypes and RAPD types in genetically related strains of Cryptococcus neoformans , 1997, Current Genetics.

[111]  D. Lalloo,et al.  Cryptococcus neoformans in Papua New Guinea: a common pathogen but an elusive source. , 1997, Journal of medical and veterinary mycology : bi-monthly publication of the International Society for Human and Animal Mycology.

[112]  S. Mathoulin-Pélissier,et al.  DNA typing suggests pigeon droppings as a source of pathogenic Cryptococcus neoformans serotype D , 1997, Journal of clinical microbiology.

[113]  P. Ferrante,et al.  Identification by polymerase chain reaction fingerprinting of Cryptococcus neoformans serotype AD. , 1997, Journal of medical and veterinary mycology : bi-monthly publication of the International Society for Human and Animal Mycology.

[114]  G. Bell,et al.  The advantage of sex in evolving yeast populations , 1997, Nature.

[115]  J. Heitman,et al.  Calcineurin is required for virulence of Cryptococcus neoformans , 1997, The EMBO journal.

[116]  K. Tomecki Cryptococcosis in the era of AIDS 100 years after the discovery of Cryptococcus neoformans , 1997 .

[117]  J. Perfect,et al.  Dominant selection system for use in Cryptococcus neoformans. , 1996, Journal of medical and veterinary mycology : bi-monthly publication of the International Society for Human and Animal Mycology.

[118]  A. Casadevall,et al.  Cryptococcus neoformans meningitis in the rat. , 1996, Laboratory investigation; a journal of technical methods and pathology.

[119]  J. Perfect,et al.  Effect of the laccase gene CNLAC1, on virulence of Cryptococcus neoformans , 1996, The Journal of experimental medicine.

[120]  B. Wickes,et al.  Dimorphism and haploid fruiting in Cryptococcus neoformans: association with the alpha-mating type. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[121]  F. Dromer,et al.  Epidemiology of cryptococcosis in France: a 9-year survey (1985-1993). French Cryptococcosis Study Group. , 1996, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[122]  K. Kwon-Chung,et al.  The second capsule gene of cryptococcus neoformans, CAP64, is essential for virulence , 1996, Infection and immunity.

[123]  L. Hutwagner,et al.  Molecular subtype distribution of Cryptococcus neoformans in four areas of the United States. Cryptococcal Disease Active Surveillance Group , 1996, Journal of clinical microbiology.

[124]  M. Bölker,et al.  The pheromone response factor coordinates filamentous growth and pathogenicity in Ustilago maydis. , 1996, The EMBO journal.

[125]  B. Wanke,et al.  Natural habitat of Cryptococcus neoformans var. neoformans in decaying wood forming hollows in living trees. , 1996, Journal of medical and veterinary mycology : bi-monthly publication of the International Society for Human and Animal Mycology.

[126]  A. Casadevall,et al.  Genetic relatedness of Cryptococcus neoformans clinical isolates grouped with the repetitive DNA probe CNRE-1 , 1995, Journal of clinical microbiology.

[127]  T. G. Mitchell,et al.  Cryptococcosis in the era of AIDS--100 years after the discovery of Cryptococcus neoformans , 1995, Clinical microbiology reviews.

[128]  A. Johnson,et al.  Molecular mechanisms of cell-type determination in budding yeast. , 1995, Current opinion in genetics & development.

[129]  L. Beukeboom Sex determination in Hymenoptera: a need for genetic and molecular studies. , 1995, BioEssays : news and reviews in molecular, cellular and developmental biology.

[130]  K. Takeo,et al.  Unbudded G2 as well as G1 arrest in the stationary phase of the basidiomycetous yeast Cryptococcus neoformans. , 1995, FEMS microbiology letters.

[131]  K. Takeo,et al.  Unbudded G as well as Gj arrest in the stationary phase of the basidiomycetous yeast , 1995 .

[132]  G. Fink,et al.  Elements of a single MAP kinase cascade in Saccharomyces cerevisiae mediate two developmental programs in the same cell type: mating and invasive growth. , 1994, Genes & development.

[133]  J. Lodge,et al.  Targeted gene replacement demonstrates that myristoyl-CoA: protein N-myristoyltransferase is essential for viability of Cryptococcus neoformans. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[134]  A. Casadevall,et al.  Pathogenesis of pulmonary Cryptococcus neoformans infection in the rat , 1994, Infection and immunity.

[135]  E. Jacobson,et al.  Relationship between superoxide dismutase and melanin in a pathogenic fungus , 1994, Infection and immunity.

[136]  J. Edman,et al.  Melanin-deficient mutants of Cryptococcus neoformans. , 1994, Journal of medical and veterinary mycology : bi-monthly publication of the International Society for Human and Animal Mycology.

[137]  P. McNamara,et al.  Cloning of a Cryptococcus neoformans gene, GPA1, encoding a G-protein alpha-subunit homolog , 1994, Infection and immunity.

[138]  K. Kwon-Chung,et al.  Complementation of a capsule-deficient mutation of Cryptococcus neoformans restores its virulence , 1994, Molecular and cellular biology.

[139]  S. Parkhurst,et al.  Sex determination and dosage compensation: lessons from flies and worms. , 1994, Science.

[140]  Ronald W. Davis,et al.  Genetic characterization of pathogenic Saccharomyces cerevisiae isolates. , 1994, Genetics.

[141]  A. Mitchell Control of meiotic gene expression in Saccharomyces cerevisiae. , 1994, Microbiological reviews.

[142]  P. Williamson Biochemical and molecular characterization of the diphenol oxidase of Cryptococcus neoformans: identification as a laccase , 1994, Journal of bacteriology.

[143]  M. McPherson,et al.  Novel thioether bond revealed by a 1.7 Å crystal structure of galactose oxidase , 1994, Nature.

[144]  G. Fink,et al.  Elements of the yeast pheromone response pathway required for filamentous growth of diploids. , 1993, Science.

[145]  D. Stillman,et al.  The Swi5 zinc-finger and Grf10 homeodomain proteins bind DNA cooperatively at the yeast HO promoter. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[146]  R. Pinner,et al.  Multilocus enzyme typing of Cryptococcus neoformans , 1993, Journal of clinical microbiology.

[147]  J. Perfect,et al.  The gene encoding phosphoribosylaminoimidazole carboxylase (ADE2) is essential for growth of Cryptococcus neoformans in cerebrospinal fluid , 1993, Infection and immunity.

[148]  J. Edman,et al.  The alpha-mating type locus of Cryptococcus neoformans contains a peptide pheromone gene , 1993, Molecular and cellular biology.

[149]  J. Perfect,et al.  Gene transfer in Cryptococcus neoformans by use of biolistic delivery of DNA , 1993, Journal of bacteriology.

[150]  F. Dromer,et al.  Isolation of Cryptococcus neoformans var. gattii from an Asian patient in France: evidence for dormant infection in healthy subjects. , 1992, Journal of medical and veterinary mycology : bi-monthly publication of the International Society for Human and Animal Mycology.

[151]  J. Edman Isolation of telomerelike sequences from Cryptococcus neoformans and their use in high-efficiency transformation , 1992, Molecular and cellular biology.

[152]  O. Nielsen,et al.  The ras1 function of Schizosaccharomyces pombe mediates pheromone‐induced transcription. , 1992, The EMBO journal.

[153]  Gerald R. Fink,et al.  Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth: Regulation by starvation and RAS , 1992, Cell.

[154]  B. Wickes,et al.  Genetic association of mating types and virulence in Cryptococcus neoformans , 1992, Infection and immunity.

[155]  D. Ellis,et al.  Ecology, life cycle, and infectious propagule of Cryptococcus neoformans , 1990, The Lancet.

[156]  K. Kwon-Chung,et al.  Isolation of the URA5 gene from Cryptococcus neoformans var. neoformans and its use as a selective marker for transformation , 1990, Molecular and cellular biology.

[157]  D. Ellis,et al.  Natural habitat of Cryptococcus neoformans var. gattii , 1990, Journal of clinical microbiology.

[158]  G. Fink,et al.  Saccharomyces cerevisiae nuclear fusion requires prior activation by alpha factor , 1986, Molecular and cellular biology.

[159]  K. Kwon-Chung,et al.  Genetic complementation in Cryptococcus neoformans , 1986, Journal of bacteriology.

[160]  K. Kwon-Chung,et al.  Encapsulation and melanin formation as indicators of virulence in Cryptococcus neoformans , 1986, Infection and immunity.

[161]  D. Greer,et al.  Large Cryptococcus neoformans isolated from brain abscess , 1985, Journal of clinical microbiology.

[162]  J. Perfect,et al.  Virulence of Cryptococcus neoformans. Regulation of capsule synthesis by carbon dioxide. , 1985, The Journal of clinical investigation.

[163]  E. Jacobson,et al.  Occurrence of diploid strains of Cryptococcus neoformans , 1985, Journal of bacteriology.

[164]  E. Jacobson,et al.  Recombinational mapping of capsule mutations in Cryptococcus neoformans , 1983, Journal of Bacteriology.

[165]  E. Jacobson,et al.  Genetic and phenotypic characterization of capsule mutants of Cryptococcus neoformans , 1982, Journal of bacteriology.

[166]  I. Polacheck,et al.  Phenoloxidase activity and virulence in isogenic strains of Cryptococcus neoformans , 1982, Infection and immunity.

[167]  I. Polacheck,et al.  Melanin-lacking mutants of Cryptococcus neoformans and their virulence for mice , 1982, Journal of bacteriology.

[168]  J. Perfect,et al.  Chronic cryptococcal meningitis: a new experimental model in rabbits. , 1980, The American journal of pathology.

[169]  K. Kwon-Chung Nuclear genotypes of spore chains in Filobasidiella neoformans (Cryptococcus neoformans). , 1980, Mycologia.

[170]  K. Kwon-Chung,et al.  DISTRIBUTION OF α AND α MATING TYPES OF CRYPTOCOCCUS NEOFORMANS AMONG NATURAL AND CLINICAL ISOLATES , 1978 .

[171]  K. Kwon-Chung Morphogenesis of Filobasidiella neoformans, the sexual state of Cryptococcus neoformans. , 1976, Mycologia.

[172]  K. Kwon-Chung,et al.  A new species of Filobasidiella, the sexual state of Cryptococcus neoformans B and C serotypes. , 1976, Mycologia.

[173]  K. Kwon-Chung A new genus, filobasidiella, the perfect state of Cryptococcus neoformans. , 1975, Mycologia.

[174]  D. Swinne-Desgain THE PIGEON AS RESERVOIR FOR CRYPTOCOCCUS NEOFORMANS , 1974 .

[175]  R. Yu,et al.  Pigment production of Cryptococcus neoformans grown with extracts of Guizotia abyssinica. , 1971, Applied microbiology.

[176]  T. Kozel,et al.  Nonencapsulated Variant of Cryptococcus neoformans I. Virulence Studies and Characterization of Soluble Polysaccharide , 1971, Infection and immunity.

[177]  G. Bulmer,et al.  Cryptococcus neoformans I. Nonencapsulated Mutants , 1967, Journal of bacteriology.

[178]  C. W. Emmons Saprophytic sources of Cryptococcus neoformans associated with the pigeon (Columba livia). , 1955, American journal of hygiene.

[179]  K. Kwon-Chung,et al.  Taxonomic studies on Filobasidiella species and their anamorphs , 2004, Antonie van Leeuwenhoek.

[180]  J. Heitman,et al.  Ras1 and Ras2 contribute shared and unique roles in physiology and virulence of Cryptococcus neoformans. , 2002, Microbiology.

[181]  T. G. Mitchell,et al.  Multiple origins of hybrid strains of Cryptococcus neoformans with serotype AD. , 2002, Microbiology.

[182]  J. Perfect,et al.  Antisense repression in Cryptococcus neoformans as a laboratory tool and potential antifungal strategy. , 2002, Microbiology.

[183]  M. Kosorok,et al.  Early diagnosis of cystic fibrosis through neonatal screening prevents severe malnutrition and improves long-term growth. Wisconsin Cystic Fibrosis Neonatal Screening Study Group. , 2001, Pediatrics.

[184]  A. Casadevall,et al.  Prevalence of Cryptococcus neoformans var. neoformans (Serotype D) and Cryptococcus neoformans var. grubii (Serotype A) isolates in New York City. , 2000, Journal of clinical microbiology.

[185]  C. R. Paula,et al.  Environmental isolation of Cryptococcus neoformans var. gattii and C. neoformans var. neoformans in the city of São Paulo, Brazil. , 2000, Medical mycology.

[186]  J. Heitman,et al.  Morphogenesis of Cryptococcus neoformans. , 2000, Contributions to microbiology.

[187]  B. Wanke,et al.  Possible primary ecological niche of Cryptococcus neoformans. , 2000, Medical mycology.

[188]  T. Doering A unique alpha-1,3 mannosyltransferase of the pathogenic fungus Cryptococcus neoformans. , 1999, Journal of bacteriology.

[189]  S Ie,et al.  Cryptococcus neoformans. , 1998, The Journal of the Louisiana State Medical Society : official organ of the Louisiana State Medical Society.

[190]  K. Buchanan,et al.  What makes Cryptococcus neoformans a pathogen? , 1998, Emerging infectious diseases.

[191]  C. Staben,et al.  Mating type in filamentous fungi. , 1997, Annual review of genetics.

[192]  E. Anaissie,et al.  Regulation of cryptococcal capsular polysaccharide by iron. , 1993, The Journal of infectious diseases.

[193]  K. Kwon-Chung,et al.  Selection of ura5 and ura3 mutants from the two varieties of Cryptococcus neoformans on 5-fluoroorotic acid medium. , 1992, Journal of medical and veterinary mycology : bi-monthly publication of the International Society for Human and Animal Mycology.

[194]  I. Herskowitz,et al.  Activation of meiosis and sporulation by repression of the RME1 product in yeast , 1986, Nature.

[195]  Mark Davidrose Saccharomyces cerevisiae Nuclear Fusion Requires Prior Activation byAlphaFactor , 1986 .

[196]  R. D. Baker The primary pulmonary lymph node complex of crytptococcosis. , 1976, American journal of clinical pathology.

[197]  R. Cavill,et al.  Cryptococcus neoformans of unusual morphology. , 1973, Applied microbiology.

[198]  R. Haugen,et al.  Tissue changes and tissue diagnosis in cryptococcosis; a study of 26 cases. , 1955, American journal of clinical pathology.