Computational implementation of the PPR potential-based cohesive model in ABAQUS: Educational perspective

Abstract A potential-based cohesive zone model, so called the PPR model, is implemented in a commercial software, e.g. ABAQUS, as a user-defined element (UEL) subroutine. The intrinsic cohesive zone modeling approach is employed because it can be formulated within the standard finite element framework. The implementation procedure for a two-dimensional linear cohesive element and the algorithm for the PPR potential-based model are presented in-detail. The source code of the UEL subroutine is provided in Appendix for educational purposes. Three computational examples are investigated to verify the PPR model and its implementation. The computational results of the model agree well with the analytical solutions.

[1]  J. C. Simo,et al.  An analysis of strong discontinuities induced by strain-softening in rate-independent inelastic solids , 1993 .

[2]  Glaucio H. Paulino,et al.  A unified potential-based cohesive model of mixed-mode fracture , 2009 .

[3]  Paul A. Wawrzynek,et al.  Simulation of the fracture process in rock with application to hydrofracturing , 1986 .

[4]  A. Huespe,et al.  From continuum mechanics to fracture mechanics: the strong discontinuity approach , 2002 .

[5]  G. Paulino,et al.  Determination of the kink point in the bilinear softening model for concrete , 2008 .

[6]  G. Paulino,et al.  Concrete fracture prediction using bilinear softening , 2007 .

[7]  Eugenio Giner,et al.  An Abaqus implementation of the extended finite element method , 2009 .

[8]  G. I. Barenblatt The formation of equilibrium cracks during brittle fracture. General ideas and hypotheses. Axially-symmetric cracks , 1959 .

[9]  Huajian Gao,et al.  Physics-based modeling of brittle fracture: Cohesive formulations and the application of meshfree methods , 2000 .

[10]  Linda S. Schadler,et al.  Effect of an interphase region on debonding of a CNT reinforced polymer composite , 2010 .

[11]  A. Hillerborg,et al.  Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements , 1976 .

[12]  M. Ortiz,et al.  FINITE-DEFORMATION IRREVERSIBLE COHESIVE ELEMENTS FOR THREE-DIMENSIONAL CRACK-PROPAGATION ANALYSIS , 1999 .

[13]  T. Siegmund,et al.  An irreversible cohesive zone model for interface fatigue crack growth simulation , 2003 .

[14]  L. J. Sluys,et al.  A new method for modelling cohesive cracks using finite elements , 2001 .

[15]  M. A. Crisfield,et al.  Progressive Delamination Using Interface Elements , 1998 .

[16]  M. Crisfield A FAST INCREMENTAL/ITERATIVE SOLUTION PROCEDURE THAT HANDLES "SNAP-THROUGH" , 1981 .

[17]  Xiaopeng Xu,et al.  Void nucleation by inclusion debonding in a crystal matrix , 1993 .

[18]  C. Liu,et al.  The cohesive law for the particle/matrix interfaces in high explosives , 2005 .

[19]  Glaucio H. Paulino,et al.  On the constitutive relation of materials with microstructure using a potential-based cohesive model for interface interaction , 2010 .

[20]  John H. Crews,et al.  The mixed-mode bending method for delamination testing , 1989 .

[21]  T. Belytschko,et al.  Extended finite element method for cohesive crack growth , 2002 .

[22]  Glaucio H. Paulino,et al.  Extrinsic cohesive modelling of dynamic fracture and microbranching instability in brittle materials , 2007 .

[23]  Jr. J. Crews,et al.  Mixed-Mode Bending Method for Delamination Testing , 1990 .

[24]  Z. Bažant,et al.  Fracture and Size Effect in Concrete and Other Quasibrittle Materials , 1997 .

[25]  Glaucio H. Paulino,et al.  Cohesive zone modeling of dynamic failure in homogeneous and functionally graded materials , 2005 .

[26]  D. S. Dugdale Yielding of steel sheets containing slits , 1960 .

[27]  Philippe H. Geubelle,et al.  Multiscale cohesive failure modeling of heterogeneous adhesives , 2008 .

[28]  Francisco Armero,et al.  Finite elements with embedded strong discontinuities for the modeling of failure in solids , 2007 .

[29]  Victor E. Saouma,et al.  Fracture Mechanics of Bond in Reinforced Concrete , 1984 .

[30]  Ole Sigmund,et al.  A 99 line topology optimization code written in Matlab , 2001 .

[31]  Kyoungsoo Park,et al.  Potential-based fracture mechanics using cohesive zone and virtual internal bond modeling , 2009 .

[32]  Karthik Ramani,et al.  Rate-dependent crack growth in adhesives: I. Modeling approach , 2003 .