Precision pulsar timing with the ORT and the GMRT and its applications in pulsar astrophysics
暂无分享,去创建一个
B. C. Joshi | P. K. Manoharan | A. Gopakumar | K. De | M. Krishnakumar | Avishek Basu | M. Surnis | Y. Maan | A. Naidu | Y. Gupta | S. Bethapudi | Arpita Choudhary | M. Bagchi | P. Manoharan | R. Nandi | D. Bandyopadhyay | L. Dey | Abhimanyu Susobhanan | Dhruv Pathak | P. Arumugasamy | Neelam Dhanda Batra | A. Basu | A. Susobhanan
[1] K. Lee,et al. A dynamical approach in exploring the unknown mass in the Solar system using pulsar timing arrays , 2018, 1802.05452.
[2] P. S. Ray,et al. The NANOGrav 11 Year Data Set: Pulsar-timing Constraints on the Stochastic Gravitational-wave Background , 2018, 1801.02617.
[3] B. A. Boom,et al. GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence , 2017, 1711.05578.
[4] Bhal Chandra Joshi,et al. The Upgraded GMRT:Opening New Windows on the Radio Universe , 2017 .
[5] Kishalay De,et al. A Wideband Digital Back-End for the Upgraded GMRT , 2017 .
[6] E. Barausse,et al. The nightmare scenario: measuring the stochastic gravitational-wave background from stalling massive black-hole binaries with pulsar-timing arrays , 2017, 1702.06964.
[7] N. Gurlebeck,et al. Giant pulsar glitches and the inertia of neutron star crusts , 2016, 1606.00016.
[8] M. Bernardi,et al. Selection bias in dynamically measured supermassive black hole samples: consequences for pulsar timing arrays , 2016, 1603.09348.
[9] J. P. Moore,et al. PRIMARY BLACK HOLE SPIN IN OJ 287 AS DETERMINED BY THE GENERAL RELATIVITY CENTENARY FLARE , 2016, 1603.04171.
[10] R. Karuppusamy,et al. High-precision timing of 42 millisecond pulsars with the European Pulsar Timing Array , 2016, 1602.08511.
[11] D. Stinebring,et al. The International Pulsar Timing Array: First Data Release , 2016, 1602.03640.
[12] J. Gair,et al. European Pulsar Timing Array Limits on Continuous Gravitational Waves from Individual Supermassive Black Hole Binaries , 2015, 1509.02165.
[13] W. Ho,et al. Pinning down the superfluid and measuring masses using pulsar glitches , 2015, Science Advances.
[14] D. Stinebring,et al. FREQUENCY-DEPENDENT DISPERSION MEASURES AND IMPLICATIONS FOR PULSAR TIMING , 2015, 1503.08491.
[15] A. Melatos,et al. Models of Pulsar Glitches , 2015, 1502.07062.
[16] D. Stinebring,et al. NANOGrav CONSTRAINTS ON GRAVITATIONAL WAVE BURSTS WITH MEMORY , 2015, 1501.05343.
[17] C. Horowitz,et al. Pulsar Glitches: The Crust may be Enough , 2014, 1404.2660.
[18] X. Siemens,et al. The stochastic background: scaling laws and time to detection for pulsar timing arrays , 2013, 1305.3196.
[19] B. C. Joshi. PULSAR TIMING ARRAYS , 2013, 1301.5730.
[20] V. Kaspi,et al. Detection of 107 glitches in 36 southern pulsars , 2012, 1211.2035.
[21] N. Chamel. Crustal entrainment and pulsar glitches. , 2012, Physical review letters.
[22] S. Ciprini,et al. On the masses of OJ287 black holes , 2012, 1208.0906.
[23] W. Ho,et al. Pulsar glitches: the crust is not enough. , 2012, Physical review letters.
[24] D. Stinebring,et al. Gravitational Wave Astronomy Using Pulsars: Massive Black Hole Mergers & the Early Universe , 2009, 0902.2968.
[25] B. Link. Instability of Superfluid Flow in the Neutron Star Core , 2011, 1111.0696.
[26] A. Gopakumar,et al. TESTING THE BLACK HOLE NO-HAIR THEOREM WITH OJ287 , 2011, 1108.5861.
[27] B. Link. Instability of superfluid flow in the neutron star inner crust , 2011, 1105.4654.
[28] M. Valtonen,et al. TESTING THE 1995 BINARY BLACK HOLE MODEL OF OJ287 , 2011 .
[29] A. Lyne,et al. A study of 315 glitches in the rotation of 102 pulsars , 2011, 1102.1743.
[30] Craig O. Heinke,et al. Cooling neutron star in the Cassiopeia A supernova remnant: evidence for superfluidity in the core , 2010, 1012.0045.
[31] J. Taylor,et al. TIMING MEASUREMENTS OF THE RELATIVISTIC BINARY PULSAR PSR B1913+16 , 2010, 1011.0718.
[32] Craig O. Heinke,et al. DIRECT OBSERVATION OF THE COOLING OF THE CASSIOPEIA A NEUTRON STAR , 2010, 1007.4719.
[33] Marc Favata. The gravitational-wave memory effect , 2010, 1003.3486.
[34] A. Gopakumar,et al. MEASURING THE SPIN OF THE PRIMARY BLACK HOLE IN OJ287 , 2009, 0912.1209.
[35] A. Vecchio,et al. Gravitational waves from resolvable massive black hole binary systems and observations with Pulsar Timing Arrays , 2008, 0809.3412.
[36] B. Link. Dynamics of quantum vorticity in a random potential. , 2008, Physical review letters.
[37] A. Vecchio,et al. The stochastic gravitational-wave background from massive black hole binary systems: implications for observations with Pulsar Timing Arrays , 2008, 0804.4476.
[38] R. Manchester,et al. tempo2, a new pulsar timing package ¿ II. The timing model and precision estimates , 2006, astro-ph/0607664.
[39] B. Carter,et al. Effect of entrainment on stress and pulsar glitches in stratified neutron star crust , 2005, astro-ph/0503044.
[40] R. Manchester,et al. The Australia Telescope National Facility Pulsar Catalogue , 2005 .
[41] Herr Waldeyer,et al. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften , 2005, Naturwissenschaften.
[42] R. Manchester,et al. The Australia Telescope National Facility Pulsar Catalogue , 2003, astro-ph/0309219.
[43] India.,et al. Observations of 14 pulsar glitches , 2003, astro-ph/0302585.
[44] A. Jaffe,et al. Gravitational Waves Probe the Coalescence Rate of Massive Black Hole Binaries , 2002, astro-ph/0210148.
[45] A. Lyne,et al. Statistical studies of pulsar glitches , 2000 .
[46] Los Alamos National Laboratory,et al. Pulsar Constraints on Neutron Star Structure and Equation of State , 1999, astro-ph/9909146.
[47] Blanchet,et al. Hereditary effects in gravitational radiation. , 1992, Physical review. D, Particles and fields.
[48] J. H. Taylor,et al. Pulsar timing and relativistic gravity , 1992, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.
[49] R. Epstein,et al. Pulsar glitches as probes of neutron star interiors , 1992, Nature.
[50] Thorne,et al. Gravitational-wave bursts with memory: The Christodoulou effect. , 1992, Physical review. D, Particles and fields.
[51] Govind Swarup,et al. The Giant Metre-Wave Radio Telescope , 1991 .
[52] D. Backer,et al. Constructing a Pulsar Timing Array , 1990 .
[53] A. Sillanpää,et al. OJ 287 - Binary pair of supermassive black holes , 1988 .
[54] K. Thorne,et al. Gravitational-wave bursts with memory and experimental prospects , 1987, Nature.
[55] R. Hellings,et al. Upper limits on the isotropic gravitational radiation background from pulsar timing analysis , 1983 .
[56] D. Helfand,et al. Pulsar timing .III. Timing noise of 50 pulsars. , 1980 .
[57] J. Cordes. Pulsar timing. II. Analysis of random walk timing noise : application to the Crab pulsar. , 1980 .
[58] S. Detweiler. Pulsar timing measurements and the search for gravitational waves , 1979 .
[59] M. Alpar. Pinning and Threading of Quantized Vortices in the Pulsar Crust Superfluid , 1977 .
[60] J. Taylor. DISCOVERY OF A PULSAR IN A BINARY SYSTEM , 1975 .
[61] P. Anderson,et al. Pulsar glitches and restlessness as a hard superfluidity phenomenon , 1975, Nature.
[62] D. Pines,et al. The elastic energy and character of quakes in solid stars and planets , 1972 .
[63] R. B. Partridge,et al. OPTICAL TIMING OF THE CRAB PULSAR, NP 0532. , 1972 .
[64] H. Bethe,et al. Neutron star matter , 1971 .
[65] V. K. Kapahi,et al. Large Steerable Radio Telescope at Ootacamund, India , 1971 .
[66] V. Radhakrishnan,et al. Detection of a Change of State in the Pulsar PSR 0833-45 , 1969, Nature.
[67] A. Hewish,et al. Observation of a Rapidly Pulsating Radio Source , 1968, Nature.