Precision pulsar timing with the ORT and the GMRT and its applications in pulsar astrophysics

[1]  K. Lee,et al.  A dynamical approach in exploring the unknown mass in the Solar system using pulsar timing arrays , 2018, 1802.05452.

[2]  P. S. Ray,et al.  The NANOGrav 11 Year Data Set: Pulsar-timing Constraints on the Stochastic Gravitational-wave Background , 2018, 1801.02617.

[3]  B. A. Boom,et al.  GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence , 2017, 1711.05578.

[4]  Bhal Chandra Joshi,et al.  The Upgraded GMRT:Opening New Windows on the Radio Universe , 2017 .

[5]  Kishalay De,et al.  A Wideband Digital Back-End for the Upgraded GMRT , 2017 .

[6]  E. Barausse,et al.  The nightmare scenario: measuring the stochastic gravitational-wave background from stalling massive black-hole binaries with pulsar-timing arrays , 2017, 1702.06964.

[7]  N. Gurlebeck,et al.  Giant pulsar glitches and the inertia of neutron star crusts , 2016, 1606.00016.

[8]  M. Bernardi,et al.  Selection bias in dynamically measured supermassive black hole samples: consequences for pulsar timing arrays , 2016, 1603.09348.

[9]  J. P. Moore,et al.  PRIMARY BLACK HOLE SPIN IN OJ 287 AS DETERMINED BY THE GENERAL RELATIVITY CENTENARY FLARE , 2016, 1603.04171.

[10]  R. Karuppusamy,et al.  High-precision timing of 42 millisecond pulsars with the European Pulsar Timing Array , 2016, 1602.08511.

[11]  D. Stinebring,et al.  The International Pulsar Timing Array: First Data Release , 2016, 1602.03640.

[12]  J. Gair,et al.  European Pulsar Timing Array Limits on Continuous Gravitational Waves from Individual Supermassive Black Hole Binaries , 2015, 1509.02165.

[13]  W. Ho,et al.  Pinning down the superfluid and measuring masses using pulsar glitches , 2015, Science Advances.

[14]  D. Stinebring,et al.  FREQUENCY-DEPENDENT DISPERSION MEASURES AND IMPLICATIONS FOR PULSAR TIMING , 2015, 1503.08491.

[15]  A. Melatos,et al.  Models of Pulsar Glitches , 2015, 1502.07062.

[16]  D. Stinebring,et al.  NANOGrav CONSTRAINTS ON GRAVITATIONAL WAVE BURSTS WITH MEMORY , 2015, 1501.05343.

[17]  C. Horowitz,et al.  Pulsar Glitches: The Crust may be Enough , 2014, 1404.2660.

[18]  X. Siemens,et al.  The stochastic background: scaling laws and time to detection for pulsar timing arrays , 2013, 1305.3196.

[19]  B. C. Joshi PULSAR TIMING ARRAYS , 2013, 1301.5730.

[20]  V. Kaspi,et al.  Detection of 107 glitches in 36 southern pulsars , 2012, 1211.2035.

[21]  N. Chamel Crustal entrainment and pulsar glitches. , 2012, Physical review letters.

[22]  S. Ciprini,et al.  On the masses of OJ287 black holes , 2012, 1208.0906.

[23]  W. Ho,et al.  Pulsar glitches: the crust is not enough. , 2012, Physical review letters.

[24]  D. Stinebring,et al.  Gravitational Wave Astronomy Using Pulsars: Massive Black Hole Mergers & the Early Universe , 2009, 0902.2968.

[25]  B. Link Instability of Superfluid Flow in the Neutron Star Core , 2011, 1111.0696.

[26]  A. Gopakumar,et al.  TESTING THE BLACK HOLE NO-HAIR THEOREM WITH OJ287 , 2011, 1108.5861.

[27]  B. Link Instability of superfluid flow in the neutron star inner crust , 2011, 1105.4654.

[28]  M. Valtonen,et al.  TESTING THE 1995 BINARY BLACK HOLE MODEL OF OJ287 , 2011 .

[29]  A. Lyne,et al.  A study of 315 glitches in the rotation of 102 pulsars , 2011, 1102.1743.

[30]  Craig O. Heinke,et al.  Cooling neutron star in the Cassiopeia A supernova remnant: evidence for superfluidity in the core , 2010, 1012.0045.

[31]  J. Taylor,et al.  TIMING MEASUREMENTS OF THE RELATIVISTIC BINARY PULSAR PSR B1913+16 , 2010, 1011.0718.

[32]  Craig O. Heinke,et al.  DIRECT OBSERVATION OF THE COOLING OF THE CASSIOPEIA A NEUTRON STAR , 2010, 1007.4719.

[33]  Marc Favata The gravitational-wave memory effect , 2010, 1003.3486.

[34]  A. Gopakumar,et al.  MEASURING THE SPIN OF THE PRIMARY BLACK HOLE IN OJ287 , 2009, 0912.1209.

[35]  A. Vecchio,et al.  Gravitational waves from resolvable massive black hole binary systems and observations with Pulsar Timing Arrays , 2008, 0809.3412.

[36]  B. Link Dynamics of quantum vorticity in a random potential. , 2008, Physical review letters.

[37]  A. Vecchio,et al.  The stochastic gravitational-wave background from massive black hole binary systems: implications for observations with Pulsar Timing Arrays , 2008, 0804.4476.

[38]  R. Manchester,et al.  tempo2, a new pulsar timing package ¿ II. The timing model and precision estimates , 2006, astro-ph/0607664.

[39]  B. Carter,et al.  Effect of entrainment on stress and pulsar glitches in stratified neutron star crust , 2005, astro-ph/0503044.

[40]  R. Manchester,et al.  The Australia Telescope National Facility Pulsar Catalogue , 2005 .

[41]  Herr Waldeyer,et al.  Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften , 2005, Naturwissenschaften.

[42]  R. Manchester,et al.  The Australia Telescope National Facility Pulsar Catalogue , 2003, astro-ph/0309219.

[43]  India.,et al.  Observations of 14 pulsar glitches , 2003, astro-ph/0302585.

[44]  A. Jaffe,et al.  Gravitational Waves Probe the Coalescence Rate of Massive Black Hole Binaries , 2002, astro-ph/0210148.

[45]  A. Lyne,et al.  Statistical studies of pulsar glitches , 2000 .

[46]  Los Alamos National Laboratory,et al.  Pulsar Constraints on Neutron Star Structure and Equation of State , 1999, astro-ph/9909146.

[47]  Blanchet,et al.  Hereditary effects in gravitational radiation. , 1992, Physical review. D, Particles and fields.

[48]  J. H. Taylor,et al.  Pulsar timing and relativistic gravity , 1992, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[49]  R. Epstein,et al.  Pulsar glitches as probes of neutron star interiors , 1992, Nature.

[50]  Thorne,et al.  Gravitational-wave bursts with memory: The Christodoulou effect. , 1992, Physical review. D, Particles and fields.

[51]  Govind Swarup,et al.  The Giant Metre-Wave Radio Telescope , 1991 .

[52]  D. Backer,et al.  Constructing a Pulsar Timing Array , 1990 .

[53]  A. Sillanpää,et al.  OJ 287 - Binary pair of supermassive black holes , 1988 .

[54]  K. Thorne,et al.  Gravitational-wave bursts with memory and experimental prospects , 1987, Nature.

[55]  R. Hellings,et al.  Upper limits on the isotropic gravitational radiation background from pulsar timing analysis , 1983 .

[56]  D. Helfand,et al.  Pulsar timing .III. Timing noise of 50 pulsars. , 1980 .

[57]  J. Cordes Pulsar timing. II. Analysis of random walk timing noise : application to the Crab pulsar. , 1980 .

[58]  S. Detweiler Pulsar timing measurements and the search for gravitational waves , 1979 .

[59]  M. Alpar Pinning and Threading of Quantized Vortices in the Pulsar Crust Superfluid , 1977 .

[60]  J. Taylor DISCOVERY OF A PULSAR IN A BINARY SYSTEM , 1975 .

[61]  P. Anderson,et al.  Pulsar glitches and restlessness as a hard superfluidity phenomenon , 1975, Nature.

[62]  D. Pines,et al.  The elastic energy and character of quakes in solid stars and planets , 1972 .

[63]  R. B. Partridge,et al.  OPTICAL TIMING OF THE CRAB PULSAR, NP 0532. , 1972 .

[64]  H. Bethe,et al.  Neutron star matter , 1971 .

[65]  V. K. Kapahi,et al.  Large Steerable Radio Telescope at Ootacamund, India , 1971 .

[66]  V. Radhakrishnan,et al.  Detection of a Change of State in the Pulsar PSR 0833-45 , 1969, Nature.

[67]  A. Hewish,et al.  Observation of a Rapidly Pulsating Radio Source , 1968, Nature.