A block Krylov subspace time-exact solution method for linear ODE systems
暂无分享,去创建一个
[1] Gene H. Golub,et al. Matrix computations , 1983 .
[2] H. V. D. Vorst,et al. An iterative solution method for solving f ( A ) x = b , using Krylov subspace information obtained for the symmetric positive definite matrix A , 1987 .
[3] H. Tal-Ezer. Spectral methods in time for parabolic problems , 1989 .
[4] L. Knizhnerman,et al. Two polynomial methods of calculating functions of symmetric matrices , 1991 .
[5] Vladimir Druskin,et al. Krylov subspace approximation of eigenpairs and matrix functions in exact and computer arithmetic , 1995, Numer. Linear Algebra Appl..
[6] C. Lubich,et al. On Krylov Subspace Approximations to the Matrix Exponential Operator , 1997 .
[7] Roger B. Sidje,et al. Expokit: a software package for computing matrix exponentials , 1998, TOMS.
[8] Anne Greenbaum,et al. Using Nonorthogonal Lanczos Vectors in the Computation of Matrix Functions , 1998, SIAM J. Sci. Comput..
[9] Marlis Hochbruck,et al. Exponential Integrators for Large Systems of Differential Equations , 1998, SIAM J. Sci. Comput..
[10] R. Keppens,et al. Implicit and semi-implicit schemes in the Versatile Advection Code : numerical tests , 1998 .
[11] W. Enright. Continuous numerical methods for ODEs with defect control , 2000 .
[12] A. Gelber,et al. An application of finite element method for solving the problem of modeling non-stationary electromagnetic fields of defectoscope , 2002 .
[13] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[14] I. Moret,et al. RD-Rational Approximations of the Matrix Exponential , 2004 .
[15] L. Shampine. Solving ODEs and DDEs with residual control , 2005 .
[16] Marlis Hochbruck,et al. Preconditioning Lanczos Approximations to the Matrix Exponential , 2005, SIAM J. Sci. Comput..
[17] A. Mielke. Analysis, modeling and simulation of multiscale problems , 2006 .
[18] Hillel Tal-Ezer,et al. On Restart and Error Estimation for Krylov Approximation of w=f(A)v , 2007, SIAM J. Sci. Comput..
[19] G. Sleijpen,et al. An SVD-approach to Jacobi-Davidson solution of nonlinear Helmholtz eigenvalue problems , 2008 .
[20] J. Verwer,et al. Unconditionally stable integration of Maxwell's equations , 2009 .
[21] L. Shampine,et al. A BVP Solver that Controls Residual and Error 1 , 2008 .
[22] C. Lubich. From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis , 2008 .
[23] Marlis Hochbruck,et al. Approximation of matrix operators applied to multiple vectors , 2008, Math. Comput. Simul..
[24] Mikhail A. Bochev. Residual, restarting and Richardson iteration for the matrix exponential , 2010 .
[25] M. Hochbruck,et al. Exponential integrators , 2010, Acta Numerica.
[26] Awad H. Al-Mohy,et al. Computing the Action of the Matrix Exponential, with an Application to Exponential Integrators , 2011, SIAM J. Sci. Comput..
[27] K. J. in 't Hout,et al. A Contour Integral Method for the Black-Scholes and Heston Equations , 2009, SIAM J. Sci. Comput..
[28] Stefan Güttel,et al. Deflated Restarting for Matrix Functions , 2011, SIAM J. Matrix Anal. Appl..
[29] Mike A. Botchev,et al. Block Krylov subspace exact time integration of linear ODE systems. Part 1: algorithm description , 2011, ArXiv.
[30] Marlis Hochbruck,et al. Residual, Restarting, and Richardson Iteration for the Matrix Exponential , 2010, SIAM J. Sci. Comput..