A block Krylov subspace time-exact solution method for linear ODE systems

We propose a time-exact Krylov-subspace-based method for solving linear ODE (ordinary differential equation) systems of the form $y'=-Ay + g(t)$ and $y''=-Ay + g(t)$, where $y(t)$ is the unknown function. The method consists of two stages. The first stage is an accurate piecewise polynomial approximation of the source term $g(t)$, constructed with the help of the truncated SVD (singular value decomposition). The second stage is a special residual-based block Krylov subspace method. The accuracy of the method is only restricted by the accuracy of the piecewise polynomial approximation and by the error of the block Krylov process. Since both errors can, in principle, be made arbitrarily small, this yields, at some costs, a time-exact method. Numerical experiments are presented to demonstrate efficiency of the new method, as compared to an exponential time integrator with Krylov subspace matrix function evaluations.

[1]  Gene H. Golub,et al.  Matrix computations , 1983 .

[2]  H. V. D. Vorst,et al.  An iterative solution method for solving f ( A ) x = b , using Krylov subspace information obtained for the symmetric positive definite matrix A , 1987 .

[3]  H. Tal-Ezer Spectral methods in time for parabolic problems , 1989 .

[4]  L. Knizhnerman,et al.  Two polynomial methods of calculating functions of symmetric matrices , 1991 .

[5]  Vladimir Druskin,et al.  Krylov subspace approximation of eigenpairs and matrix functions in exact and computer arithmetic , 1995, Numer. Linear Algebra Appl..

[6]  C. Lubich,et al.  On Krylov Subspace Approximations to the Matrix Exponential Operator , 1997 .

[7]  Roger B. Sidje,et al.  Expokit: a software package for computing matrix exponentials , 1998, TOMS.

[8]  Anne Greenbaum,et al.  Using Nonorthogonal Lanczos Vectors in the Computation of Matrix Functions , 1998, SIAM J. Sci. Comput..

[9]  Marlis Hochbruck,et al.  Exponential Integrators for Large Systems of Differential Equations , 1998, SIAM J. Sci. Comput..

[10]  R. Keppens,et al.  Implicit and semi-implicit schemes in the Versatile Advection Code : numerical tests , 1998 .

[11]  W. Enright Continuous numerical methods for ODEs with defect control , 2000 .

[12]  A. Gelber,et al.  An application of finite element method for solving the problem of modeling non-stationary electromagnetic fields of defectoscope , 2002 .

[13]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[14]  I. Moret,et al.  RD-Rational Approximations of the Matrix Exponential , 2004 .

[15]  L. Shampine Solving ODEs and DDEs with residual control , 2005 .

[16]  Marlis Hochbruck,et al.  Preconditioning Lanczos Approximations to the Matrix Exponential , 2005, SIAM J. Sci. Comput..

[17]  A. Mielke Analysis, modeling and simulation of multiscale problems , 2006 .

[18]  Hillel Tal-Ezer,et al.  On Restart and Error Estimation for Krylov Approximation of w=f(A)v , 2007, SIAM J. Sci. Comput..

[19]  G. Sleijpen,et al.  An SVD-approach to Jacobi-Davidson solution of nonlinear Helmholtz eigenvalue problems , 2008 .

[20]  J. Verwer,et al.  Unconditionally stable integration of Maxwell's equations , 2009 .

[21]  L. Shampine,et al.  A BVP Solver that Controls Residual and Error 1 , 2008 .

[22]  C. Lubich From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis , 2008 .

[23]  Marlis Hochbruck,et al.  Approximation of matrix operators applied to multiple vectors , 2008, Math. Comput. Simul..

[24]  Mikhail A. Bochev Residual, restarting and Richardson iteration for the matrix exponential , 2010 .

[25]  M. Hochbruck,et al.  Exponential integrators , 2010, Acta Numerica.

[26]  Awad H. Al-Mohy,et al.  Computing the Action of the Matrix Exponential, with an Application to Exponential Integrators , 2011, SIAM J. Sci. Comput..

[27]  K. J. in 't Hout,et al.  A Contour Integral Method for the Black-Scholes and Heston Equations , 2009, SIAM J. Sci. Comput..

[28]  Stefan Güttel,et al.  Deflated Restarting for Matrix Functions , 2011, SIAM J. Matrix Anal. Appl..

[29]  Mike A. Botchev,et al.  Block Krylov subspace exact time integration of linear ODE systems. Part 1: algorithm description , 2011, ArXiv.

[30]  Marlis Hochbruck,et al.  Residual, Restarting, and Richardson Iteration for the Matrix Exponential , 2010, SIAM J. Sci. Comput..