Partial regularity of the dynamic system modeling the flow of liquid crystals

Here we established the partial regularity of suitable weak solutions to the dynamical systems modelling the flow of liquid crystals. It is a natural generalization of an earlier work of Caffarelli-Kohn-Nirenberg on the Navier-Stokes system with some simplifications due to better estimates on the pressure term.

[1]  P. Gennes,et al.  The physics of liquid crystals , 1974 .

[2]  Vladimir Scheffer The Navier-Stokes equations in space dimension four , 1978 .

[3]  J. Serrin On the interior regularity of weak solutions of the Navier-Stokes equations , 1962 .

[4]  F. Lin,et al.  Nonparabolic dissipative systems modeling the flow of liquid crystals , 1995 .

[5]  Vladimir Scheffer The Navier-Stokes equations on a bounded domain , 1980 .

[6]  R. Temam Navier-Stokes Equations , 1977 .

[7]  E. Fabes,et al.  Boundary Value Problems for the Navier-Stokes Equations , 1977 .

[8]  Wolf von Wahl,et al.  On the regularity of the pressure of weak solutions of Navier-Stokes equations , 1986 .

[9]  David Kinderlehrer,et al.  Existence and partial regularity of static liquid crystal configurations , 1986 .

[10]  F. M. Leslie Theory of Flow Phenomena in Liquid Crystals , 1979 .

[11]  Vladimir Scheffer Partial regularity of solutions to the Navier-Stokes equations. , 1976 .

[12]  L. Evans MULTIPLE INTEGRALS IN THE CALCULUS OF VARIATIONS AND NONLINEAR ELLIPTIC SYSTEMS , 1984 .

[13]  R. Kohn,et al.  Partial regularity of suitable weak solutions of the navier‐stokes equations , 1982 .

[14]  Wolf von Wahl,et al.  The equations of Navier-Stokes and abstract parabolic equations , 1985 .

[15]  Mariano Giaquinta,et al.  Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. (AM-105), Volume 105 , 1984 .

[16]  Vladimir Scheffer Hausdorff measure and the Navier-Stokes equations , 1977 .

[17]  R. Johnson,et al.  A priori estimates and unique continuation theorems for second order parabolic equations , 1971 .

[18]  O. Ladyženskaja Linear and Quasilinear Equations of Parabolic Type , 1968 .

[19]  Michael Struwe,et al.  On partial regularity results for the navier‐stokes equations , 1988 .

[20]  H. Fédérer Geometric Measure Theory , 1969 .