A structural connectivity convergence zone in the ventral and anterior temporal lobes: Data-driven evidence from structural imaging

The hub-and-spoke model of semantic cognition seeks to reconcile embodied views of a fully distributed semantic network with patient evidence, primarily from semantic dementia, who demonstrate modality-independent conceptual deficits associated with atrophy centred on the ventrolateral anterior temporal lobe. The proponents of this model have recently suggested that the temporal cortex is a graded representational space where concepts become less linked to a specific modality as they are processed farther away from primary and secondary sensory cortices and towards the ventral anterior temporal lobe. To explore whether there is evidence that the connectivity patterns of the temporal lobe converge in its ventral anterior end the current study uses three dimensional Laplacian eigenmapping, a technique that allows visualisation of similarity in a low dimensional space. In this space similarity is encoded in terms of distances between data points. We found that the ventral and anterior temporal lobe is in a unique position of being at the centre of mass of the data points within the connective similarity space. This can be interpreted as the area where the connectivity profiles of all other temporal cortex voxels converge. This study is the first to explicitly investigate the pattern of connectivity and thus provides the missing link in the evidence that the ventral anterior temporal lobe can be considered a multi-modal graded hub.

[1]  E. Jefferies The neural basis of semantic cognition: Converging evidence from neuropsychology, neuroimaging and TMS , 2013, Cortex.

[2]  B. Hawkins,et al.  A framework: , 2020, Harmful Interaction between the Living and the Dead in Greek Tragedy.

[3]  T. Rogers,et al.  The neural and computational bases of semantic cognition , 2016, Nature Reviews Neuroscience.

[4]  A. de Froe [Left and right]. , 1980, Nederlands tijdschrift voor geneeskunde.

[5]  Elizabeth Jefferies,et al.  Situating the default-mode network along a principal gradient of macroscale cortical organization , 2016, Proceedings of the National Academy of Sciences.

[6]  Jitendra Malik,et al.  Normalized Cuts and Image Segmentation , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  P. Hoffman,et al.  Graded specialization within and between the anterior temporal lobes , 2015, Annals of the New York Academy of Sciences.

[8]  Michel Thiebaut de Schotten,et al.  Architecture of functional lateralisation in the human brain , 2018 .

[9]  Yanchao Bi,et al.  The Left Fusiform Gyrus is a Critical Region Contributing to the Core Behavioral Profile of Semantic Dementia , 2016, Front. Hum. Neurosci..

[10]  Matthew A. Lambon Ralph,et al.  Convergent Connectivity and Graded Specialization in the Rostral Human Temporal Lobe as Revealed by Diffusion-Weighted Imaging Probabilistic Tractography , 2012, Journal of Cognitive Neuroscience.

[11]  Elizabeth Jefferies,et al.  Both the Middle Temporal Gyrus and the Ventral Anterior Temporal Area Are Crucial for Multimodal Semantic Processing: Distortion-corrected fMRI Evidence for a Double Gradient of Information Convergence in the Temporal Lobes , 2012, Journal of Cognitive Neuroscience.

[12]  Matthew A. Lambon Ralph,et al.  Neurocognitive insights on conceptual knowledge and its breakdown , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[13]  William W. Graves,et al.  Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. , 2009, Cerebral cortex.

[14]  Emily J. Mayberry,et al.  Coherent concepts are computed in the anterior temporal lobes , 2010, Proceedings of the National Academy of Sciences.

[15]  Nico Papinutto,et al.  Structural connectivity of the human anterior temporal lobe: A diffusion magnetic resonance imaging study , 2016, Human brain mapping.

[16]  Taylor J. Abel,et al.  Direct Physiologic Evidence of a Heteromodal Convergence Region for Proper Naming in Human Left Anterior Temporal Lobe , 2015, The Journal of Neuroscience.

[17]  R. Leak,et al.  Neocortex and Allocortex Respond Differentially to Cellular Stress In Vitro and Aging In Vivo , 2013, PloS one.

[18]  P. Hoffman,et al.  The anterior temporal lobes are critically involved in acquiring new conceptual knowledge: Evidence for impaired feature integration in semantic dementia , 2014, Cortex.

[19]  B. Sahakian,et al.  Differing patterns of temporal atrophy in Alzheimer’s disease and semantic dementia , 2001, Neurology.

[20]  Satrajit S. Ghosh,et al.  Functional gradients of the cerebellum , 2018, bioRxiv.

[21]  W. Scoville,et al.  LOSS OF RECENT MEMORY AFTER BILATERAL HIPPOCAMPAL LESIONS , 1957, Journal of neurology, neurosurgery, and psychiatry.

[22]  J. Hodges,et al.  Semantic dementia. Progressive fluent aphasia with temporal lobe atrophy. , 1992 .

[23]  Jan Sijbers,et al.  Probabilistic fiber tracking using the residual bootstrap with constrained spherical deconvolution , 2011, Human brain mapping.

[24]  Paul Hoffman,et al.  The Roles of Left Versus Right Anterior Temporal Lobes in Semantic Memory: A Neuropsychological Comparison of Postsurgical Temporal Lobe Epilepsy Patients , 2018, Cerebral cortex.

[25]  Timothy Edward John Behrens,et al.  Changes in connectivity profiles define functionally distinct regions in human medial frontal cortex. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[26]  C. Keysers,et al.  Probabilistic tractography recovers a rostrocaudal trajectory of connectivity variability in the human insular cortex , 2011, Human brain mapping.

[27]  Michael I. Jordan,et al.  On Spectral Clustering: Analysis and an algorithm , 2001, NIPS.

[28]  Daniel C. Alexander,et al.  Using the Model-Based Residual Bootstrap to Quantify Uncertainty in Fiber Orientations From $Q$-Ball Analysis , 2009, IEEE Transactions on Medical Imaging.

[29]  H. Chertkow,et al.  Semantic memory , 2002, Current neurology and neuroscience reports.

[30]  Matthew A. Lambon Ralph,et al.  Neurocognitive insights on conceptual knowledge and its breakdown , 2014 .

[31]  Tim D. Fryer,et al.  Declarative memory impairments in Alzheimer's disease and semantic dementia , 2006, NeuroImage.

[32]  Timothy Edward John Behrens,et al.  Reliable identification of the auditory thalamus using multi-modal structural analyses , 2006, NeuroImage.

[33]  Elizabeth Jefferies,et al.  Going beyond Inferior Prefrontal Involvement in Semantic Control: Evidence for the Additional Contribution of Dorsal Angular Gyrus and Posterior Middle Temporal Cortex , 2013, Journal of Cognitive Neuroscience.

[34]  Richard J. Binney,et al.  The ventral and inferolateral aspects of the anterior temporal lobe are crucial in semantic memory: evidence from a novel direct comparison of distortion-corrected fMRI, rTMS, and semantic dementia. , 2010, Cerebral cortex.

[35]  Elizabeth Jefferies,et al.  Semantic Processing in the Anterior Temporal Lobes: A Meta-analysis of the Functional Neuroimaging Literature , 2010, Journal of Cognitive Neuroscience.

[36]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[37]  R. C. Oldfield The assessment and analysis of handedness: the Edinburgh inventory. , 1971, Neuropsychologia.

[38]  Alan Connelly,et al.  Robust determination of the fibre orientation distribution in diffusion MRI: Non-negativity constrained super-resolved spherical deconvolution , 2007, NeuroImage.

[39]  J Mazziotta,et al.  A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[40]  Paul Hoffman,et al.  The Semantic Network at Work and Rest: Differential Connectivity of Anterior Temporal Lobe Subregions , 2016, The Journal of Neuroscience.

[41]  Geoff J M Parker,et al.  Distortion correction for diffusion‐weighted MRI tractography and fMRI in the temporal lobes , 2010, Human brain mapping.

[42]  Koen V. Haak,et al.  Connectopic mapping with resting-state fMRI , 2016, NeuroImage.

[43]  Guy B. Williams,et al.  What the left and right anterior fusiform gyri tell us about semantic memory. , 2010, Brain : a journal of neurology.

[44]  H. D. Simon,et al.  A spectral algorithm for envelope reduction of sparse matrices , 1993, Supercomputing '93. Proceedings.

[45]  James L. McClelland,et al.  Structure and deterioration of semantic memory: a neuropsychological and computational investigation. , 2004, Psychological review.

[46]  Claude J. Bajada,et al.  An emergent functional parcellation of the temporal cortex , 2017, NeuroImage.

[47]  Geoffrey J M Parker,et al.  A framework for a streamline‐based probabilistic index of connectivity (PICo) using a structural interpretation of MRI diffusion measurements , 2003, Journal of magnetic resonance imaging : JMRI.

[48]  T. Rogers,et al.  A unified model of human semantic knowledge and its disorders , 2017, Nature Human Behaviour.

[49]  Timothy T Rogers,et al.  Semantic memory is impaired in patients with unilateral anterior temporal lobe resection for temporal lobe epilepsy. , 2012, Brain : a journal of neurology.

[50]  M. L. Lambon Ralph,et al.  Conceptual knowledge is underpinned by the temporal pole bilaterally: convergent evidence from rTMS. , 2009, Cerebral cortex.

[51]  J. Hodges,et al.  Non-verbal semantic impairment in semantic dementia , 2000, Neuropsychologia.

[52]  E. Jefferies,et al.  Anterior temporal lobes mediate semantic representation: Mimicking semantic dementia by using rTMS in normal participants , 2007, Proceedings of the National Academy of Sciences.

[53]  The architecture of functional lateralisation and its relationship to callosal connectivity in the human brain , 2018 .

[54]  M. Fiedler Algebraic connectivity of graphs , 1973 .

[55]  John Ashburner,et al.  A fast diffeomorphic image registration algorithm , 2007, NeuroImage.

[56]  G. Varoquaux,et al.  Connectivity‐based parcellation: Critique and implications , 2015, Human brain mapping.

[57]  Claude J. Bajada,et al.  A graded tractographic parcellation of the temporal lobe , 2017, NeuroImage.

[58]  Richard S. J. Frackowiak,et al.  A voxel‐based morphometry study of semantic dementia: Relationship between temporal lobe atrophy and semantic memory , 2000, Annals of neurology.

[59]  Mikhail Belkin,et al.  Laplacian Eigenmaps for Dimensionality Reduction and Data Representation , 2003, Neural Computation.

[60]  Nigel MacLennan,et al.  Assessment and Analysis , 2017 .

[61]  P. Hoffman,et al.  Direct Exploration of the Role of the Ventral Anterior Temporal Lobe in Semantic Memory: Cortical Stimulation and Local Field Potential Evidence From Subdural Grid Electrodes , 2014, Cerebral cortex.

[62]  Mikhail Belkin,et al.  Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering , 2001, NIPS.

[63]  R Cameron Craddock,et al.  A whole brain fMRI atlas generated via spatially constrained spectral clustering , 2012, Human brain mapping.

[64]  Daniel C Alexander,et al.  Probabilistic anatomical connectivity derived from the microscopic persistent angular structure of cerebral tissue , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[65]  B. Mesquita,et al.  Adjustment to Chronic Diseases and Terminal Illness Health Psychology : Psychological Adjustment to Chronic Disease , 2006 .

[66]  P. Hoffman,et al.  The Roles of Left Versus Right Anterior Temporal Lobes in Conceptual Knowledge: An ALE Meta-analysis of 97 Functional Neuroimaging Studies , 2015, Cerebral cortex.

[67]  Ulrike von Luxburg,et al.  A tutorial on spectral clustering , 2007, Stat. Comput..

[68]  D. Plaut Graded modality-specific specialisation in semantics: A computational account of optic aphasia , 2002, Cognitive neuropsychology.

[69]  T. Rogers,et al.  Where do you know what you know? The representation of semantic knowledge in the human brain , 2007, Nature Reviews Neuroscience.