Rabinizer 4: From LTL to Your Favourite Deterministic Automaton

We present Rabinizer 4, a tool set for translating formulae of linear temporal logic to different types of deterministic \(\omega \)-automata. The tool set implements and optimizes several recent constructions, including the first implementation translating the frequency extension of LTL. Further, we provide a distribution of PRISM that links Rabinizer and offers model checking procedures for probabilistic systems that are not in the official PRISM distribution. Finally, we evaluate the performance and in cases with any previous implementations we show enhancements both in terms of the size of the automata and the computational time, due to algorithmic as well as implementation improvements.

[1]  Alexandre Duret-Lutz,et al.  Spot 2 . 0 — a framework for LTL and ω-automata manipulation , 2016 .

[2]  Thomas A. Henzinger,et al.  Solving Games Without Determinization , 2006, CSL.

[3]  Alexandre Duret-Lutz,et al.  Compositional Approach to Suspension and Other Improvements to LTL Translation , 2013, SPIN.

[4]  Jan Kretínský,et al.  From LTL and Limit-Deterministic Büchi Automata to Deterministic Parity Automata , 2017, TACAS.

[5]  Marta Z. Kwiatkowska,et al.  PRISM 4.0: Verification of Probabilistic Real-Time Systems , 2011, CAV.

[6]  Alexandre Duret-Lutz,et al.  Seminator: A Tool for Semi-Determinization of Omega-Automata , 2017, LPAR.

[7]  Fred Kröger,et al.  Temporal Logic of Programs , 1987, EATCS Monographs on Theoretical Computer Science.

[8]  Jan Kretínský,et al.  Limit-Deterministic Büchi Automata for Linear Temporal Logic , 2016, CAV.

[9]  Fabio Somenzi,et al.  Efficient Büchi Automata from LTL Formulae , 2000, CAV.

[10]  Paulo Tabuada,et al.  Robust Linear Temporal Logic , 2015, CSL.

[11]  Salomon Sickert,et al.  LTL to Deterministic Emerson-Lei Automata , 2017, GandALF.

[12]  Orna Kupferman,et al.  Formally Reasoning About Quality , 2016, J. ACM.

[13]  Jan Strejcek,et al.  Comparison of LTL to Deterministic Rabin Automata Translators , 2013, LPAR.

[14]  Kousha Etessami,et al.  Optimizing Büchi Automata , 2000, CONCUR.

[15]  Carsten Fritz,et al.  Constructing Büchi Automata from Linear Temporal Logic Using Simulation Relations for Alternating Büchi Automata , 2003, CIAA.

[16]  Moshe Y. Vardi Automatic verification of probabilistic concurrent finite state programs , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[17]  Mahesh Viswanathan,et al.  Optimal Translation of LTL to Limit Deterministic Automata , 2017, TACAS.

[18]  Benedikt Bollig,et al.  Frequency Linear-time Temporal Logic , 2012, 2012 Sixth International Symposium on Theoretical Aspects of Software Engineering.

[19]  Jan Kretínský,et al.  Deterministic Automata for the (F,G)-fragment of LTL , 2012, CAV.

[20]  Nir Piterman,et al.  From Nondeterministic Buchi and Streett Automata to Deterministic Parity Automata , 2006, 21st Annual IEEE Symposium on Logic in Computer Science (LICS'06).

[21]  Mihalis Yannakakis,et al.  Verifying temporal properties of finite-state probabilistic programs , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[22]  Zhenhua Duan,et al.  Buchi Determinization Made Tighter , 2014, ArXiv.

[23]  Amir Pnueli,et al.  Faster Solutions of Rabin and Streett Games , 2006, 21st Annual IEEE Symposium on Logic in Computer Science (LICS'06).

[24]  M. Raj Mohan,et al.  Averaging in LTL , 2014, CONCUR.

[25]  Jan Kretínský,et al.  Rabinizer: Small Deterministic Automata for LTL(F, G) , 2012, ATVA.

[26]  Dimitra Giannakopoulou,et al.  From States to Transitions: Improving Translation of LTL Formulae to Büchi Automata , 2002, FORTE.

[27]  Vojtech Rehák,et al.  LTL to Büchi Automata Translation: Fast and More Deterministic , 2012, TACAS.

[28]  Sven Schewe,et al.  Tighter Bounds for the Determinisation of Büchi Automata , 2009, FoSSaCS.

[29]  Pierre Wolper,et al.  An Automata-Theoretic Approach to Automatic Program Verification (Preliminary Report) , 1986, LICS.

[30]  Jan Kretínský,et al.  Controller Synthesis for MDPs and Frequency LTL\GU , 2015, LPAR.

[31]  Jan Kretínský,et al.  LTL Store: Repository of LTL formulae from literature and case studies , 2018, ArXiv.

[32]  Lijun Zhang,et al.  Lazy Probabilistic Model Checking without Determinisation , 2013, CONCUR.

[33]  Michael Luttenberger,et al.  Solving Mean-Payoff Games on the GPU , 2016, ATVA.

[34]  Oliver Friedmann,et al.  Solving Parity Games in Practice , 2009, ATVA.

[35]  Jan Kretínský,et al.  MoChiBA: Probabilistic LTL Model Checking Using Limit-Deterministic Büchi Automata , 2016, ATVA.

[36]  Fausto Giunchiglia,et al.  Improved Automata Generation for Linear Temporal Logic , 1999, CAV.

[37]  Jan Kretínský,et al.  Rabinizer 3: Safraless Translation of LTL to Small Deterministic Automata , 2014, ATVA.

[38]  Orna Kupferman,et al.  Safraless Compositional Synthesis , 2006, CAV.

[39]  Jan Kretínský,et al.  Index Appearance Record for Transforming Rabin Automata into Parity Automata , 2017, TACAS.

[40]  Mahesh Viswanathan,et al.  Limit Deterministic and Probabilistic Automata for LTL ∖ GU , 2015, TACAS.

[41]  Jan Křetínský,et al.  Controller Synthesis for MDPs and Frequency LTL$$_{\setminus \mathbf{G}\mathbf U}$$ , 2015, ICLP 2015.

[42]  Krishnendu Chatterjee,et al.  Unifying Two Views on Multiple Mean-Payoff Objectives in Markov Decision Processes , 2015, 2015 30th Annual ACM/IEEE Symposium on Logic in Computer Science.

[43]  Alexandre Duret-Lutz,et al.  Spot 2.0 - A Framework for LTL and \omega -Automata Manipulation , 2016, ATVA.

[44]  S. Safra,et al.  On the complexity of omega -automata , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[45]  Bernd Finkbeiner,et al.  The 5th Reactive Synthesis Competition (SYNTCOMP 2018): Benchmarks, Participants & Results , 2019, ArXiv.

[46]  Jan Kretínský,et al.  From LTL to Deterministic Automata: A Safraless Compositional Approach , 2014, CAV.

[47]  Dana Fisman,et al.  A Modular Approach for Büchi Determinization , 2015, CONCUR.

[48]  Jan Kretínský,et al.  Rabinizer 2: Small Deterministic Automata for LTL ∖ GU , 2013, ATVA.

[49]  Paul Gastin,et al.  Fast LTL to Büchi Automata Translation , 2001, CAV.

[50]  Jan Kretínský,et al.  From LTL to deterministic automata , 2014, Formal Methods Syst. Des..

[51]  Jan Kretínský,et al.  The Hanoi Omega-Automata Format , 2015, CAV.

[52]  Swen Jacobs,et al.  A High-Level LTL Synthesis Format: TLSF v1.1 , 2016, SYNT@CAV.

[53]  Jean-Michel Couvreur,et al.  On-the-Fly Verification of Linear Temporal Logic , 1999, World Congress on Formal Methods.

[54]  Krishnendu Chatterjee,et al.  Automata with Generalized Rabin Pairs for Probabilistic Model Checking and LTL Synthesis , 2013, CAV.

[55]  Christel Baier,et al.  Principles of model checking , 2008 .

[56]  Rajeev Alur,et al.  Deterministic generators and games for Ltl fragments , 2004, TOCL.