Detecting dark matter through dark photons from the Sun: Charged particle signatures

Dark matter may interact with the Standard Model through the kinetic mixing of dark photons, $A'$, with Standard Model photons. Such dark matter will accumulate in the Sun and annihilate into dark photons. The dark photons may then leave the Sun and decay into pairs of charged Standard Model particles that can be detected by the Alpha Magnetic Spectrometer. The directionality of this "dark sunshine" is distinct from all astrophysical backgrounds, providing an opportunity for unambiguous dark matter discovery by AMS. We perform a complete analysis of this scenario including Sommerfeld enhancements of dark matter annihilation and the effect of the Sun's magnetic field on the signal, and we define a set of cuts to optimize the signal probability. With the three years of data already collected, AMS may discover dark matter with mass 1 TeV $\lesssim m_X \lesssim$ 10 TeV, dark photon masses $m_{A'} \sim \mathcal O(100)$ MeV, and kinetic mixing parameters $10^{-10} \lesssim \varepsilon \lesssim 10^{-8}$. The proposed search extends beyond existing beam dump and supernova bounds, and it is complementary to direct detection, probing the same region of parameter space for elastic dark matter, but potentially far more in the case of inelastic dark matter.

[1]  S. Reddy,et al.  Nucleon-nucleon bremsstrahlung of dark gauge bosons and revised supernova constraints , 2015, 1511.09136.

[2]  Jonathan L. Feng,et al.  Dark photons from the center of the Earth: Smoking-gun signals of dark matter , 2015, 1509.07525.

[3]  B. Shuve,et al.  Discovering Inelastic Thermal-Relic Dark Matter at Colliders , 2015, 1508.03050.

[4]  M. Kaplinghat,et al.  Direct detection signatures of self-interacting dark matter with a light mediator , 2015, 1507.04007.

[5]  M. Incagli Performance of the AMS-02 Electromagnetic Calorimeter in Space , 2015 .

[6]  I. Yavin,et al.  New window to millicharged particles at the LHC , 2015, 1506.04760.

[7]  T. Slatyer Indirect dark matter signatures in the cosmic dark ages. I. Generalizing the bound on s-wave dark matter annihilation from Planck results , 2015, 1506.03811.

[8]  J. Kopp,et al.  Lepton jets from radiating dark matter , 2015, 1505.07459.

[9]  G. Gallucci Performance of the AMS-02 Electromagnetic Calorimeter in Space , 2015 .

[10]  M. Kaplinghat,et al.  Galactic center excess in γ rays from annihilation of self-interacting dark matter. , 2015, Physical review letters.

[11]  J. Pradler,et al.  Direct detection constraints on dark photon dark matter , 2014, 1412.8378.

[12]  Jia Liu,et al.  Signals of a light dark force in the galactic center , 2014, 1412.1485.

[13]  Yong-chao Zhang,et al.  Supernova bounds on the dark photon using its electromagnetic decay , 2014, 1410.0221.

[14]  R. Sagdeev,et al.  Electron and Positron Fluxes in Primary Cosmic Rays Measured with the Alpha Magnetic Spectrometer on the International Space Station , 2014 .

[15]  J. Pradler,et al.  Cosmological constraints on very dark photons , 2014, 1407.0993.

[16]  S. Khrapak Classical scattering in strongly attractive potentials. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  A. Hektor,et al.  PPPC 4 DMν: a Poor Particle Physicist Cookbook for Neutrinos from Dark Matter annihilations in the Sun , 2013, 1312.6408.

[18]  Michael J. Pivovaroff,et al.  Working Group Report: New Light Weakly Coupled Particles , 2013 .

[19]  R. Webb,et al.  First results from the LUX dark matter experiment at the Sanford underground research facility. , 2013, Physical review letters.

[20]  M. Kaplinghat,et al.  Direct Detection Portals for Self-interacting Dark Matter , 2013, 1310.7945.

[21]  H. Dreiner,et al.  Supernova constraints on MeV dark sectors from $e^+e^-$ annihilations , 2013, 1310.3826.

[22]  KIPACStanford,et al.  Implication of neutrino backgrounds on the reach of next generation dark matter direct detection experiments , 2013, 1307.5458.

[23]  Marius Potgieter,et al.  Solar Modulation of Cosmic Rays , 2013, 1306.4421.

[24]  Hai-Bo Yu,et al.  Beyond Collisionless Dark Matter: Particle Physics Dynamics for Dark Matter Halo Structure , 2013, 1302.3898.

[25]  S. Gninenko Constraints on sub-GeV hidden sector gauge bosons from a search for heavy neutrino decays , 2012, 1204.3583.

[26]  J. Beacom,et al.  Precise Relic WIMP Abundance and its Impact on Searches for Dark Matter Annihilation , 2012, 1204.3622.

[27]  L. Krauss,et al.  Constraints on Light Hidden Sector Gauge Bosons from Supernova Cooling , 2012, 1201.2683.

[28]  Gino Tosti,et al.  Constraints on Dark Matter Models From a Fermi LAT Search for High-Energy Cosmic-Ray Electrons from the Sun , 2011, 1107.4272.

[29]  Jared Kaplan,et al.  Discovering New Light States at Neutrino Experiments , 2010, 1008.0636.

[30]  J. Roberts PAMELA through a magnetic lens , 2010, 1005.4668.

[31]  Jonathan L. Feng,et al.  Sommerfeld enhancements for thermal relic dark matter , 2010, 1005.4678.

[32]  Jonathan L. Feng,et al.  Halo-shape and relic-density exclusions of Sommerfeld-enhanced dark matter explanations of cosmic ray excesses. , 2009, Physical review letters.

[33]  T. Slatyer,et al.  The Sommerfeld enhancement for dark matter with an excited state , 2009, 0910.5713.

[34]  M. Papucci,et al.  Searches for long lived neutral particles , 2009, 0910.4160.

[35]  A. Serenelli New results on standard solar models , 2009, 0910.3690.

[36]  Philip Schuster,et al.  High energy electron signals from dark matter annihilation in the Sun , 2009, 0910.1839.

[37]  P. Schuster,et al.  Terrestrial and Solar Limits on Long-Lived Particles in a Dark Sector , 2009, 0910.1602.

[38]  Brian Batell,et al.  Solar Gamma Rays Powered by Secluded Dark Matter , 2009, 0910.1567.

[39]  J. Ferguson,et al.  NEW SOLAR COMPOSITION: THE PROBLEM WITH SOLAR MODELS REVISITED , 2009, 0909.2668.

[40]  A. Zentner High-energy neutrinos from dark matter particle self-capture within the Sun , 2009, 0907.3448.

[41]  M. Pospelov,et al.  Exploring Portals to a Hidden Sector Through Fixed Targets , 2009, 0906.5614.

[42]  P. Schuster,et al.  New Fixed-Target Experiments to Search for Dark Gauge Forces , 2009, 0906.0580.

[43]  S. Cassel Sommerfeld factor for arbitrary partial wave processes , 2009, 0903.5307.

[44]  A. Peter Dark matter in the Solar System. III. The distribution function of WIMPs at the Earth from gravitational capture , 2009, 0902.1348.

[45]  Bo Li The Heliosphere Through the Solar Activity Cycle , 2008 .

[46]  Zuowei Liu,et al.  Stueckelberg Z ' extension with kinetic mixing and millicharged dark matter from the hidden sector , 2007, hep-ph/0702123.

[47]  N. Padmanabhan,et al.  Detecting dark matter annihilation with CMB polarization: Signatures and experimental prospects , 2005, astro-ph/0503486.

[48]  M. Kamionkowski,et al.  Particle decays during the cosmic dark ages , 2003, astro-ph/0310473.

[49]  G. Morfill,et al.  Scattering in the attractive Yukawa potential in the limit of strong interaction. , 2003, Physical review letters.

[50]  N. Arkani-Hamed,et al.  Small Neutrino Masses from Supersymmetry Breaking , 2000, hep-ph/0006312.

[51]  S. Sarkar,et al.  Cosmic microwave background anisotropy in the decaying neutrino cosmology , 1998, astro-ph/9805108.

[52]  R. Foot,et al.  Neutrino masses in the SU(5) ⊗ SU(5)′ mirror symmetric model , 1998, hep-ph/9803261.

[53]  D. H. White,et al.  Evidence for nu_mu -> nu_e Oscillations from Pion Decay in Flight Neutrinos , 1997, nucl-ex/9706006.

[54]  A. Gould Cosmological density of WIMPs from solar and terrestrial annihilations , 1992 .

[55]  Nelson,et al.  Search for neutral metastable penetrating particles produced in the SLAC beam dump. , 1988, Physical review. D, Particles and fields.

[56]  A. Gould Direct and indirect capture of weakly interacting massive particles by the Earth , 1988 .

[57]  Andrew Gould,et al.  Weakly Interacting Massive Particle Distribution in and Evaporation from the Sun , 1987 .

[58]  Andrew Gould,et al.  Resonant Enhancements in Weakly Interacting Massive Particle Capture by the Earth , 1987 .

[59]  B. Holdom Searching for ϵ charges and a new U(1) , 1986 .

[60]  T. Gaisser,et al.  Limits on cold-dark-matter candidates from deep underground detectors. , 1986, Physical review. D, Particles and fields.

[61]  Wilczek,et al.  Solar System constraints and signatures for dark-matter candidates. , 1986, Physical review. D, Particles and fields.

[62]  K. Freese Can Scalar Neutrinos Or Massive Dirac Neutrinos Be the Missing Mass , 1986 .

[63]  A. Baroncelli,et al.  A Search for Decays of Heavy Neutrinos in the Mass Range 0.5-{GeV} to 2.8-{GeV} , 1986 .

[64]  B. Holdom Two U(1)'s and Epsilon Charge Shifts , 1986 .

[65]  W. Press,et al.  Capture by the sun of a galactic population of weakly interacting massive particles , 1985 .

[66]  J. Silk,et al.  The photino, the sun, and high-energy neutrinos. , 1985, Physical review letters.

[67]  L. Okun LIMITS OF ELECTRODYNAMICS: PARAPHOTONS? , 1982 .

[68]  L. Okun,et al.  On the possibility of experimental observation of mirror particles , 1966 .

[69]  David M. Miller,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[70]  E. Parker Dynamics of the Interplanetary Gas and Magnetic Fields , 1958 .

[71]  W. Burke Supernova cooling in a dark matter smog , 2014 .

[72]  D. Seckel,et al.  Cosmic asymmetry, neutrinos and the sun☆ , 1987 .

[73]  Alok Misra,et al.  Submitted to , 1987 .

[74]  Andrew Gould,et al.  Resonant Enhancements In WIMP Capture By The Earth , 1987 .

[75]  A. Sommerfeld Über die Beugung und Bremsung der Elektronen , 1931 .

[76]  ournal of C osmology and A stroparticle hysics Impact of the dark matter velocity distribution on capture rates in the Sun , 2022 .