Penerapan Metode Localization Tampering dan Hashing untuk Deteksi Rekayasa Video Digital

The development of digital video technology which is increasingly advanced makes digital video engineering crimes prone to occur. The change in digital video has changed information communication, and it is easy to use in digital crime. One way to solve this digital crime case is to use the NIST (National Institute of Standards and Technology) method for video forensics. The initial stage is carried out by collecting data and carrying out the process of extracting the collected results. A local hash and noise algorithm can then be used to analyze the resulting results, which will detect any digital video interference or manipulation at each video frame, and perform hash analysis to detect the authenticity of the video. In digital video engineering, histogram analysis can be performed by calculating the histogram value metric, which is used to compare the histogram values ​​of the original video and video noise and make graphical comparisons. The results of the difference in frame analysis show that the results of the video show that the 2nd to 7th frames experience an attack while the histogram calculation of the original video centroid value and video tampering results in different values ​​in the third frame, namely with a value of 124.318 and the 7th frame of the video experiencing a difference in the value of 105,966 videos. tampering and 107,456 in the original video. Hash analysis on video tampering results in an invalid SHA-1 hash, this can prove that the video has been manipulated.

[1]  Shancang Li,et al.  Video-Based Evidence Analysis and Extraction in Digital Forensic Investigation , 2019, IEEE Access.

[2]  Hermansyah Sembiring,et al.  Penerapan Algoritma Secure Hash Algorithm (SHA) Keamanan pada Citra , 2019 .

[3]  Marco Fontani,et al.  A Video Forensic Framework for the Unsupervised Analysis of MP4-Like File Container , 2019, IEEE Transactions on Information Forensics and Security.

[4]  Ermi Suryani Nasution MENDETEKSI ORISINALITAS FILE VIDEO MENERAPKAN METODE MD5 , 2019 .

[5]  Folman P. Ambarita Penanggulangan Tindak Pidana Terorisme , 2018, Binamulia Hukum.

[6]  Ruchira Naskar,et al.  A Digital Forensic Technique for Inter-Frame Video Forgery Detection Based on 3D CNN , 2018, ICISS.

[7]  H. A. Gani,et al.  Penyelesaian Kasus Kejahatan Internet (Cybercrime) dalam Perspektif UU ITE No.11 TAHUN 2008 dan UU No.19 Tahun 2016 , 2019 .

[8]  Dony Ariyus,et al.  Analisis Histogram Steganografi Least Significant Bit Pada Citra Grayscale , 2020 .

[9]  Juan M. Corchado,et al.  Counter-Terrorism Video Analysis Using Hash-Based Algorithms , 2019, Algorithms.

[10]  Anton Yudhana,et al.  Experimental Analysis of Web Browser Sessions Using Live Forensics Method , 2018 .

[11]  Imam Riadi,et al.  Analisis Forensik Recovery pada Smartphone Android Menggunakan Metode National Institute Of Justice (NIJ) , 2019 .

[12]  Sinar Sinurat,et al.  IMPLEMENTASI SECURE HASH ALGORITMA UNTUK PENGAMANAN PADA FILE VIDEO , 2018 .

[13]  Arfin Nurma Halida,et al.  Waspada Cybercrime dan Informasi Hoax pada Media Sosial Facebook , 2018, Khizanah al-Hikmah.

[14]  Imam Riadi,et al.  Analysis of Forensic Video in Storage Data Using Tampering Method , 2018 .

[15]  Rusydi Umar,et al.  ANALISIS FORENSIK BUKTI DIGITAL PADA FROZEN SOLID STATE DRIVE DENGAN METODE NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY (NIST) , 2018 .

[16]  Shaozhang Niu,et al.  Multi-scale segmentation strategies in PRNU-based image tampering localization , 2019, Multimedia Tools and Applications.