An edge preserving noise smoothing technique using multiscale morphology

This paper presents a method for improving the quality of gray-level images by reducing the effect of noise using multiscale morphology. The underlying concept of the work is to assign progressively less importance to features of smaller scales as their possibilities of being noise particles are more. Features at various scales are extracted by means of morphological filtering. The proposed scheme is first illustrated in one dimension. Morphological towers are built to implement the method in two dimensions. The proposed algorithm has been tested on a set of real images corrupted with different types of noise. The results are compared with those of other standard noise removal algorithms based on some standard performance measures. A modification of the method considering noise statistics along with its results are also presented in this paper.

[1]  H. Minkowski Volumen und Oberfläche , 1903 .

[2]  Luc Vincent,et al.  Morphological Area Openings and Closings for Grey-scale Images , 1994 .

[3]  Linda G. Shapiro,et al.  Computer and Robot Vision , 1991 .

[4]  Christian Lantuéjoul,et al.  Geodesic methods in quantitative image analysis , 1984, Pattern Recognit..

[5]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[6]  Leo Dorst,et al.  The Morphological Equivalent of Gaussian Scale-Space , 1997, Gaussian Scale-Space Theory.

[7]  T R Crimmins,et al.  Geometric filter for speckle reduction. , 1985, Applied optics.

[8]  Antonios Gasteratos,et al.  Soft Mathematical Morphology: Extensions, Algorithms, and Implementations , 1999 .

[9]  Stanley R Sternberg,et al.  Grayscale morphology , 1986 .

[10]  Edward R. Dougherty,et al.  Gray-Scale Morphology , 2003 .

[11]  Frank Y. Shih,et al.  Threshold Decomposition of Gray-Scale Soft Morphology into Binary Soft Morphology , 1995, CVGIP Graph. Model. Image Process..

[12]  Rafael C. González,et al.  Local Determination of a Moving Contrast Edge , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  Petros Maragos,et al.  Morphological filters-Part II: Their relations to median, order-statistic, and stack filters , 1987, IEEE Trans. Acoust. Speech Signal Process..

[14]  Chia-Hung Yeh,et al.  Noise reduction of VQ encoded images through anti-gray coding , 1999, IEEE Trans. Image Process..

[15]  Azriel Rosenfeld,et al.  Digital Picture Processing , 1976 .

[16]  Alexander Toet A hierarchical morphological image decomposition , 1990, Pattern Recognit. Lett..

[17]  Joachim Weickert,et al.  A Review of Nonlinear Diffusion Filtering , 1997, Scale-Space.

[18]  J. Andrew Bangham,et al.  Morphological scale-space preserving transforms in many dimensions , 1996, J. Electronic Imaging.

[19]  Its'hak Dinstein,et al.  Morphological Approach for Dashed Lines Detection , 1995, GREC.

[20]  Peter Johansen,et al.  Gaussian Scale-Space Theory , 1997, Computational Imaging and Vision.

[21]  J. Andrew Bangham,et al.  Multiscale median and morphological filters for 2D pattern recognition , 1994, Signal Process..

[22]  Marcel J. E. Golay,et al.  Hexagonal Parallel Pattern Transformations , 1969, IEEE Transactions on Computers.

[23]  J. Andrew Bangham,et al.  A comparison of linear and nonlinear scale-space filters in noise , 1996, 1996 8th European Signal Processing Conference (EUSIPCO 1996).

[24]  Bhabatosh Chanda,et al.  A multiscale morphological approach to local contrast enhancement , 2000, Signal Process..

[25]  G. Matheron Random Sets and Integral Geometry , 1976 .

[26]  Tony Lindeberg,et al.  Scale-Space Theory in Computer Vision , 1993, Lecture Notes in Computer Science.

[27]  P. Laguna,et al.  Signal Processing , 2002, Yearbook of Medical Informatics.

[28]  H. Minkowski Volumen und Oberfläche , 1903 .

[29]  Stephen M. Pizer,et al.  A Multiresolution Hierarchical Approach to Image Segmentation Based on Intensity Extrema , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  M. Duff,et al.  PARALLEL PROCESSORS FOR DIGITAL IMAGE PROCESSING , 1979 .

[31]  Philippe Salembier,et al.  Flat zones filtering, connected operators, and filters by reconstruction , 1995, IEEE Trans. Image Process..

[32]  Jean Serra,et al.  The texture analyser , 1972 .

[33]  Michael W. Berns,et al.  Digital Image Processing and Analysis , 1986 .

[34]  Scott T. Acton,et al.  Morphological anisotropic diffusion , 1997, Proceedings of International Conference on Image Processing.

[35]  WEN-YEN Wu,et al.  Performance evaluation of some noise reduction methods , 1992, CVGIP Graph. Model. Image Process..

[36]  J. Goutsias,et al.  Optimal Morphological Pattern Restoration from Noisy Binary Images , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[37]  Frank Y. Shih,et al.  Image analysis using mathematical morphology: algorithms and architectures , 1988 .

[38]  Philippe Salembier,et al.  Morphological multiscale segmentation for image coding , 1994, Signal Process..

[39]  M.-H. Chen,et al.  A Multiscanning Approach Based on Morphological Filtering , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[40]  Yrjö Neuvo,et al.  Robust edge detector based on morphological filters , 1993, Pattern Recognit. Lett..

[41]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[42]  Peter Stucki,et al.  Advances in Digital Image Processing , 1979, Springer US.

[43]  Guy Flouzat,et al.  Speckle removal on radar imagery based on mathematical morphology , 1989 .

[44]  Petros Maragos,et al.  Pattern Spectrum and Multiscale Shape Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..