Catalytic hydrogen sensing using microheated platinum nanoparticle-loaded graphene aerogel

Abstract Low power catalytic hydrogen sensors are fabricated by functionalizing low power polysilicon microheaters with platinum nanoparticle catalyst loaded in a high surface area graphene aerogel support. Fabrication and characterization of the polysilicon microheaters are described. The platinum nanoparticle-loaded graphene aerogel is characterized by transmission electron microscopy, scanning electron microscopy, and energy dispersive X-ray spectroscopy. The catalytic hydrogen sensors consume as little as 2.2 mW of power, have sensitivity of 1.6%/10,000 ppm hydrogen, a t90 response and recovery time of 0.97 s and 0.72 s, respectively, a lower detection limit of approximately 65 ppm, and negligible cross sensitivity to methane, n-pentane, and diethylether.

[1]  W. Shin,et al.  Thermopile sensor-devices for the catalytic detection of hydrogen gas , 2008 .

[2]  Joseph R. Stetter,et al.  Review of Electrochemical Hydrogen Sensors , 2009 .

[3]  Michael Arndt,et al.  Thermal and gas-sensing properties of a micromachined thermal conductivity sensor for the detection of hydrogen in automotive applications , 2002 .

[4]  M. Worsley,et al.  Synthesis of highly crystalline sp2-bonded boron nitride aerogels. , 2013, ACS nano.

[5]  M. Gall,et al.  The Si planar pellistor: a low-power pellistor sensor in Si thin-film technology , 1991 .

[6]  A. Rose The sensitivity performance of the human eye on an absolute scale. , 1948, Journal of the Optical Society of America.

[7]  Byeong Kwon Ju,et al.  Micromachined catalytic combustible hydrogen gas sensor , 2011 .

[8]  C. N. Lau,et al.  Superior thermal conductivity of single-layer graphene. , 2008, Nano letters.

[9]  Ulrich Welp,et al.  Fabrication of Palladium Nanotubes and Their Application in Hydrogen Sensing , 2005 .

[10]  J. Stetter,et al.  Amperometric gas sensors--a review. , 2008, Chemical reviews.

[11]  Hyun Jae Kim,et al.  Low power micro-gas sensors using mixed SnO2 nanoparticles and MWCNTs to detect NO2, NH3, and xylene gases for ubiquitous sensor network applications , 2010 .

[12]  J. Black,et al.  Electromigration—A brief survey and some recent results , 1969 .

[13]  I. Blech Electromigration in thin aluminum films on titanium nitride , 1976 .

[14]  Walter Lang,et al.  A miniaturized catalytic gas sensor for hydrogen detection based on stabilized nanoparticles as catalytic layer , 2013 .

[15]  William Mickelson,et al.  Low-power, fast, selective nanoparticle-based hydrogen sulfide gas sensor , 2012 .

[16]  Péter Fürjes,et al.  Explosion-proof monitoring of hydrocarbons by mechanically stabilised, integrable calorimetric microsensors , 2003 .

[17]  C. Rivkin,et al.  Summary and Findings from the NREL/DOE Hydrogen Sensor Workshop (June 8, 2011) , 2012 .

[18]  Douglas R. Kauffman,et al.  Carbon nanotube gas and vapor sensors. , 2008, Angewandte Chemie.

[19]  H. Nan,et al.  The thermal stability of graphene in air investigated by Raman spectroscopy , 2013 .

[20]  Ulrich Banach,et al.  Hydrogen Sensors - A review , 2011 .

[21]  K. Kinoshita,et al.  The thermal decomposition of platinum(II) and (IV) complexes , 1974 .

[22]  Vladimir M. Aroutiounian,et al.  Metal oxide hydrogen, oxygen, and carbon monoxide sensors for hydrogen setups and cells , 2007 .

[23]  Tammy Y. Olson,et al.  Synthesis of graphene aerogel with high electrical conductivity. , 2010, Journal of the American Chemical Society.

[24]  Alexander Star,et al.  Gas sensor array based on metal-decorated carbon nanotubes. , 2006, The journal of physical chemistry. B.

[25]  Juergen Biener,et al.  Mechanically robust 3D graphene macroassembly with high surface area. , 2012, Chemical communications.

[26]  Ichiro Matsubara,et al.  Planar catalytic combustor film for thermoelectric hydrogen sensor , 2005 .