Paper-based Pneumatic Locomotive Robot with Sticky Actuator

Demands for small-scale and low-cost robots have witnessed a great increase in recent years [1–5]. This paper introduces the design and fabrication of a novel, simple, low-cost and designer-friendly locomotive robot. The materials and tools to build the robot originate from everyday life. The robot is pneumatically powered and manually controlled by simply pumping and vacuuming the syringe repeatedly, which realizes reliable locomotion by folding and opening of the planes. In order to realize this complicated motion, a “3D Sticky Actuator” is developed. The motion and force analysis of actuator are then modelled by the numerical method to develop the relations between design parameters. This suggests a systematic and user interactive way of manufacturing various shapes of the actuator, depending on user-defined road condition (e.g. obstacles and slopes) and other constraints. One key advantage of the paper-based robot is suggested by its high feasibility.

[1]  Cagdas D. Onal,et al.  Self-pop-up cylindrical structure by global heating , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[2]  Ronald S. Fearing,et al.  RoACH: An autonomous 2.4g crawling hexapod robot , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[3]  Xu Sun,et al.  Sticky Actuator: Free-Form Planar Actuators for Animated Objects , 2015, TEI.

[4]  Mark Yim,et al.  New locomotion gaits , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[5]  Robert J. Wood,et al.  Towards printable robotics: Origami-inspired planar fabrication of three-dimensional mechanisms , 2011, 2011 IEEE International Conference on Robotics and Automation.

[6]  Daniela Rus,et al.  An untethered miniature origami robot that self-folds, walks, swims, and degrades , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[7]  Yoshihiro Kawahara,et al.  Self-folding printable elastic electric devices: Resistor, capacitor, and inductor , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[8]  Craig D. McGray,et al.  The self-reconfiguring robotic molecule , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).