Spectra of Uniform Hypergraphs
暂无分享,去创建一个
[1] R. L. Brooks. On Colouring the Nodes of a Network , 1941 .
[2] W. T. Tutte,et al. On Unicursal Paths in a Network of Degree 4 , 1941 .
[3] de Ng Dick Bruijn,et al. Circuits and Trees in Oriented Linear Graphs , 1951 .
[4] H. Wilf. The Eigenvalues of a Graph and Its Chromatic Number , 1967 .
[5] N. Biggs. Algebraic Graph Theory , 1974 .
[6] Michael Doob,et al. Spectra of graphs , 1980 .
[7] Noga Alon,et al. The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.
[8] F. Chung. The Laplacian of a Hypergraph. , 1992 .
[9] I. M. Gelʹfand,et al. Discriminants, Resultants, and Multidimensional Determinants , 1994 .
[10] D. Cvetkovic,et al. Spectra of graphs : theory and application , 1995 .
[11] Avi Wigderson,et al. On the second eigenvalue of hypergraphs , 1995, Comb..
[12] Fan Chung,et al. Spectral Graph Theory , 1996 .
[13] W. Li,et al. Spectra of Hypergraphs and Applications , 1996 .
[14] D. Cvetkovic,et al. Spectra of Graphs: Theory and Applications , 1997 .
[15] David A. Cox,et al. Using Algebraic Geometry , 1998 .
[16] Yoshiharu Kohayakawa,et al. Hypergraphs, Quasi-randomness, and Conditions for Regularity , 2002, J. Comb. Theory, Ser. A.
[17] J. A. Rodŕıguez,et al. Laplacian Eigenvalues and Partition Problems in Hypergraphs , 2004 .
[18] Lek-Heng Lim,et al. Singular values and eigenvalues of tensors: a variational approach , 2005, 1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005..
[19] Liqun Qi,et al. Eigenvalues of a real supersymmetric tensor , 2005, J. Symb. Comput..
[20] A. Morozov,et al. Analogue of the identity Log Det = Trace Log for resultants , 2008 .
[21] Kung-Ching Chang,et al. Perron-Frobenius theorem for nonnegative tensors , 2008 .
[22] N. Alon,et al. The Probabilistic Method: Alon/Probabilistic , 2008 .
[23] Marcello Pelillo,et al. A generalization of the Motzkin–Straus theorem to hypergraphs , 2009, Optim. Lett..
[24] A. Cayley. A theorem on trees , 2009 .
[25] Marcello Pelillo,et al. New Bounds on the Clique Number of Graphs Based on Spectral Hypergraph Theory , 2009, LION.
[26] Tamás Terlaky,et al. New stopping criteria for detecting infeasibility in conic optimization , 2009, Optim. Lett..
[27] J. Pach,et al. Wiley‐Interscience Series in Discrete Mathematics and Optimization , 2011 .
[28] Willem H. Haemers,et al. Spectra of Graphs , 2011 .
[29] Linyuan Lu,et al. High-Ordered Random Walks and Generalized Laplacians on Hypergraphs , 2011, WAW.
[30] David Conlon,et al. Weak quasi‐randomness for uniform hypergraphs , 2012, Random Struct. Algorithms.
[31] D. Cvetkovic,et al. Recent Results in the Theory of Graph Spectra , 2012 .
[32] Liqun Qi,et al. Algebraic connectivity of an even uniform hypergraph , 2012, J. Comb. Optim..
[33] S. Gaubert,et al. Perron–Frobenius theorem for nonnegative multilinear forms and extensions , 2009, 0905.1626.