Spectra of Uniform Hypergraphs

[1]  R. L. Brooks On Colouring the Nodes of a Network , 1941 .

[2]  W. T. Tutte,et al.  On Unicursal Paths in a Network of Degree 4 , 1941 .

[3]  de Ng Dick Bruijn,et al.  Circuits and Trees in Oriented Linear Graphs , 1951 .

[4]  H. Wilf The Eigenvalues of a Graph and Its Chromatic Number , 1967 .

[5]  N. Biggs Algebraic Graph Theory , 1974 .

[6]  Michael Doob,et al.  Spectra of graphs , 1980 .

[7]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[8]  F. Chung The Laplacian of a Hypergraph. , 1992 .

[9]  I. M. Gelʹfand,et al.  Discriminants, Resultants, and Multidimensional Determinants , 1994 .

[10]  D. Cvetkovic,et al.  Spectra of graphs : theory and application , 1995 .

[11]  Avi Wigderson,et al.  On the second eigenvalue of hypergraphs , 1995, Comb..

[12]  Fan Chung,et al.  Spectral Graph Theory , 1996 .

[13]  W. Li,et al.  Spectra of Hypergraphs and Applications , 1996 .

[14]  D. Cvetkovic,et al.  Spectra of Graphs: Theory and Applications , 1997 .

[15]  David A. Cox,et al.  Using Algebraic Geometry , 1998 .

[16]  Yoshiharu Kohayakawa,et al.  Hypergraphs, Quasi-randomness, and Conditions for Regularity , 2002, J. Comb. Theory, Ser. A.

[17]  J. A. Rodŕıguez,et al.  Laplacian Eigenvalues and Partition Problems in Hypergraphs , 2004 .

[18]  Lek-Heng Lim,et al.  Singular values and eigenvalues of tensors: a variational approach , 2005, 1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005..

[19]  Liqun Qi,et al.  Eigenvalues of a real supersymmetric tensor , 2005, J. Symb. Comput..

[20]  A. Morozov,et al.  Analogue of the identity Log Det = Trace Log for resultants , 2008 .

[21]  Kung-Ching Chang,et al.  Perron-Frobenius theorem for nonnegative tensors , 2008 .

[22]  N. Alon,et al.  The Probabilistic Method: Alon/Probabilistic , 2008 .

[23]  Marcello Pelillo,et al.  A generalization of the Motzkin–Straus theorem to hypergraphs , 2009, Optim. Lett..

[24]  A. Cayley A theorem on trees , 2009 .

[25]  Marcello Pelillo,et al.  New Bounds on the Clique Number of Graphs Based on Spectral Hypergraph Theory , 2009, LION.

[26]  Tamás Terlaky,et al.  New stopping criteria for detecting infeasibility in conic optimization , 2009, Optim. Lett..

[27]  J. Pach,et al.  Wiley‐Interscience Series in Discrete Mathematics and Optimization , 2011 .

[28]  Willem H. Haemers,et al.  Spectra of Graphs , 2011 .

[29]  Linyuan Lu,et al.  High-Ordered Random Walks and Generalized Laplacians on Hypergraphs , 2011, WAW.

[30]  David Conlon,et al.  Weak quasi‐randomness for uniform hypergraphs , 2012, Random Struct. Algorithms.

[31]  D. Cvetkovic,et al.  Recent Results in the Theory of Graph Spectra , 2012 .

[32]  Liqun Qi,et al.  Algebraic connectivity of an even uniform hypergraph , 2012, J. Comb. Optim..

[33]  S. Gaubert,et al.  Perron–Frobenius theorem for nonnegative multilinear forms and extensions , 2009, 0905.1626.