Polariton-lasing in microcavities filled with fluorescent proteins

Strong coupling between excitons and photons inside a microcavity leads to the formation of cavity polaritons, hybrid light-matter particles. Under suitable conditions, polaritons can emit coherent light without population inversion, whereby polariton lasing can exhibit a threshold at least an order of magnitude less than that of conventional photon lasing in the same material. Polaritons in organic semiconductors are stable at room temperature, due to their large exciton binding energy. This renders organic materials interesting for light-mater interaction experiments at ambient conditions. In this paper, we report on polariton-lasing using fluorescent proteins embedded in a planar microcavity. The typical laser-like threshold-behavior, manifesting in an intensity nonlinearity, coherence build-up with a linewidth drop and an interactioninduced blueshift stemming from the part-matter nature of polaritons are presented. Additionally, we show the possibility to confine photonic modes inside deterministically created traps by presenting discretized mode spectra.

[1]  Pavlos G. Lagoudakis,et al.  Realizing the classical XY Hamiltonian in polariton simulators. , 2016, Nature materials.

[2]  S. Höfling,et al.  Multi-state lasing in self-assembled ring-shaped green fluorescent protein microcavities , 2014 .

[3]  Alper Kiraz,et al.  In vitro and in vivo biolasing of fluorescent proteins suspended in liquid microdroplet cavities. , 2014, Lab on a chip.

[4]  Ullrich Scherf,et al.  Room-temperature Bose-Einstein condensation of cavity exciton-polaritons in a polymer. , 2014, Nature materials.

[5]  K. Vahala Optical microcavities , 2003, Nature.

[6]  Nonlinear interactions in an organic polariton condensate , 2014, CLEO 2014.

[7]  Gregor Weihs,et al.  Polariton lasing vs. photon lasing in a semiconductor microcavity , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[8]  U. Scherf,et al.  Zero-Dimensional Organic Exciton–Polaritons in Tunable Coupled Gaussian Defect Microcavities at Room Temperature , 2016, 1901.08893.

[9]  O. Shimomura,et al.  Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. , 1962, Journal of cellular and comparative physiology.

[10]  A. Zakhidov,et al.  Phase-locked coherent modes in a patterned metal–organic microcavity , 2012, Nature Photonics.

[11]  S. Yun,et al.  Bio-optimized energy transfer in densely packed fluorescent protein enables near-maximal luminescence and solid-state lasers , 2014, Nature Communications.

[12]  S. Höfling,et al.  Tunable Light–Matter Hybridization in Open Organic Microcavities , 2017 .

[13]  V. Savona,et al.  Bose–Einstein condensation of exciton polaritons , 2006, Nature.

[14]  M. Kamp,et al.  Exciton-polariton trapping and potential landscape engineering , 2015, Reports on progress in physics. Physical Society.

[15]  Gerd Ulrich Nienhaus,et al.  Fluorescent proteins for live cell imaging: Opportunities, limitations, and challenges , 2009, IUBMB life.

[16]  M. J. Cormier,et al.  Primary structure of the Aequorea victoria green-fluorescent protein. , 1992, Gene.

[17]  K. West,et al.  Bose-Einstein Condensation of Microcavity Polaritons in a Trap , 2007, Science.

[18]  M. Chalfie,et al.  Green fluorescent protein as a marker for gene expression. , 1994, Science.

[19]  An exciton-polariton laser based on biologically produced fluorescent protein , 2016, Science Advances.

[20]  C. Wieman,et al.  Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor , 1995, Science.

[21]  Stephen R. Forrest,et al.  Room-temperature polariton lasing in an organic single-crystal microcavity , 2010 .

[22]  R Y Tsien,et al.  Wavelength mutations and posttranslational autoxidation of green fluorescent protein. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Steven G. Johnson,et al.  Meep: A flexible free-software package for electromagnetic simulations by the FDTD method , 2010, Comput. Phys. Commun..

[24]  M. S. Skolnick,et al.  Strong exciton–photon coupling in an organic semiconductor microcavity , 1998, Nature.

[25]  S. Höfling,et al.  Exciton dynamics in solid-state green fluorescent protein , 2017 .

[26]  S. Maier,et al.  Ultrastrongly Coupled Exciton–Polaritons in Metal‐Clad Organic Semiconductor Microcavities , 2013 .

[27]  S. Höfling,et al.  Strong Coupling in Fully Tunable Microcavities Filled with Biologically Produced Fluorescent Proteins , 2017 .

[28]  C. Piermarocchi,et al.  Role of the exchange of carriers in elastic exciton-exciton scattering in quantum wells , 1998 .

[29]  S. Höfling,et al.  Molding Photonic Boxes into Fluorescent Emitters by Direct Laser Writing , 2017, Advanced materials.

[30]  John D. Joannopoulos,et al.  Laser action from two-dimensional distributed feedback in photonic crystals , 1999 .

[31]  S. Lukyanov,et al.  Fluorescent proteins from nonbioluminescent Anthozoa species , 1999, Nature Biotechnology.

[32]  A. Schawlow Lasers , 2018, Acta Ophthalmologica.

[33]  Malte C. Gather,et al.  Single-cell biological lasers , 2011 .

[34]  Low-threshold conical microcavity dye lasers , 2010 .

[35]  Rajeev J Ram,et al.  Nonequilibrium condensates and lasers without inversion: Exciton-polariton lasers. , 1996, Physical review. A, Atomic, molecular, and optical physics.