Generation of a p16 Reporter Mouse and Its Use to Characterize and Target p16high Cells In Vivo.

[1]  D. Sheppard,et al.  Sentinel p16INK4a+ cells in the basement membrane form a reparative niche in the lung , 2020, bioRxiv.

[2]  A. Miyajima,et al.  Multidimensional imaging of liver injury repair in mice reveals fundamental role of the ductular reaction , 2020, Communications Biology.

[3]  K. Wagner,et al.  Defined p16High Senescent Cell Types Are Indispensable for Mouse Healthspan. , 2020, Cell metabolism.

[4]  Mary C. Regier,et al.  A Rainbow Reporter Tracks Single Cells and Reveals Heterogeneous Cellular Dynamics among Pluripotent Stem Cells and Their Differentiated Derivatives , 2020, bioRxiv.

[5]  M. Koutsilieris,et al.  The Role of Senescence in the Development of Nonalcoholic Fatty Liver Disease and Progression to Nonalcoholic Steatohepatitis , 2020, Hepatology.

[6]  R. Cardiff,et al.  A cancer rainbow mouse for visualizing the functional genomics of oncogenic clonal expansion , 2019, Nature Communications.

[7]  U. Alon,et al.  Senescent cell turnover slows with age providing an explanation for the Gompertz law , 2019, Nature Communications.

[8]  S. D’Costa,et al.  Controlled induction and targeted elimination of p16INK4a‐expressing chondrocytes in cartilage explant culture , 2019, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[9]  Y. Saeys,et al.  Stellate Cells, Hepatocytes, and Endothelial Cells Imprint the Kupffer Cell Identity on Monocytes Colonizing the Liver Macrophage Niche , 2019, Immunity.

[10]  C. Schmitt,et al.  Cellular Senescence: Defining a Path Forward , 2019, Cell.

[11]  A. Feldstein,et al.  Neutrophils contribute to spontaneous resolution of liver inflammation and fibrosis via microRNA-223. , 2019, The Journal of clinical investigation.

[12]  Ashley J. Schulte,et al.  Comparative Genomics Reveals Shared Mutational Landscape in Canine Hemangiosarcoma and Human Angiosarcoma , 2019, Molecular Cancer Research.

[13]  Tomoyuki Mano,et al.  Advanced CUBIC tissue clearing for whole-organ cell profiling , 2019, Nature Protocols.

[14]  Jiandie D. Lin,et al.  Landscape of Intercellular Crosstalk in Healthy and NASH Liver Revealed by Single-Cell Secretome Gene Analysis. , 2019, Molecular cell.

[15]  P. Fortina,et al.  Single-Cell Genomics. , 2019, Clinical chemistry.

[16]  S. Bonner-Weir,et al.  Acceleration of β Cell Aging Determines Diabetes and Senolysis Improves Disease Outcomes. , 2019, Cell metabolism.

[17]  Jiahuai Han,et al.  Macrophage p38α promotes nutritional steatohepatitis through M1 polarization. , 2019, Journal of hepatology.

[18]  A. Ransick,et al.  Single Cell Profiling Reveals Sex, Lineage and Regional Diversity in the Mouse Kidney , 2019, bioRxiv.

[19]  Angela Oliveira Pisco,et al.  A Single Cell Transcriptomic Atlas Characterizes Aging Tissues in the Mouse , 2019, bioRxiv.

[20]  O. Bischof,et al.  AP-1 Imprints a Reversible Transcriptional Program of Senescent Cells , 2019, bioRxiv.

[21]  J. Bonventre,et al.  Cellular Senescence in the Kidney. , 2019, Journal of the American Society of Nephrology : JASN.

[22]  Fabian J Theis,et al.  PAGA: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells , 2019, Genome biology.

[23]  J. Parker,et al.  Cells exhibiting strong p16INK4a promoter activation in vivo display features of senescence , 2019, Proceedings of the National Academy of Sciences.

[24]  K. Aird,et al.  Jumonji C Demethylases in Cellular Senescence , 2018, Genes.

[25]  J. Boeke,et al.  LINE-1 derepression in senescent cells triggers interferon and inflammaging , 2018, Nature.

[26]  D. Schuppan,et al.  The role of macrophages in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis , 2018, Nature Reviews Gastroenterology & Hepatology.

[27]  K. Sakimura,et al.  Ablation of Central Serotonergic Neurons Decreased REM Sleep and Attenuated Arousal Response , 2018, Front. Neurosci..

[28]  Haruo Kasai,et al.  Chemical Landscape for Tissue Clearing Based on Hydrophilic Reagents. , 2018, Cell reports.

[29]  A. van Oudenaarden,et al.  Single-Cell Transcriptomics Meets Lineage Tracing. , 2018, Cell stem cell.

[30]  D. Allison,et al.  Senolytics Improve Physical Function and Increase Lifespan in Old Age , 2018, Nature Medicine.

[31]  James C. Cummings,et al.  Profiling of m6A RNA modifications identified an age‐associated regulation of AGO2 mRNA stability , 2018, Aging cell.

[32]  Leland McInnes,et al.  UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction , 2018, ArXiv.

[33]  Fabian J Theis,et al.  SCANPY: large-scale single-cell gene expression data analysis , 2018, Genome Biology.

[34]  Kohei Miyazono,et al.  Whole-Body Profiling of Cancer Metastasis with Single-Cell Resolution. , 2017, Cell reports.

[35]  V. Korolchuk,et al.  Persistent mTORC1 signaling in cell senescence results from defects in amino acid and growth factor sensing , 2017, The Journal of cell biology.

[36]  Caroline L. Wilson,et al.  Cellular senescence drives age-dependent hepatic steatosis , 2017, Nature Communications.

[37]  Shenghui He,et al.  Senescence in Health and Disease , 2017, Cell.

[38]  S. Picelli Single-cell RNA-sequencing: The future of genome biology is now , 2017, RNA biology.

[39]  Wiggert A. van Cappellen,et al.  Targeted Apoptosis of Senescent Cells Restores Tissue Homeostasis in Response to Chemotoxicity and Aging , 2017, Cell.

[40]  E. Laconi,et al.  Aging promotes neoplastic disease through effects on the tissue microenvironment , 2016, Aging.

[41]  G. Alexander,et al.  Senescence in chronic liver disease: Is the future in aging? , 2016, Journal of hepatology.

[42]  I. Manabe,et al.  Macrophages in age-related chronic inflammatory diseases , 2016, npj Aging and Mechanisms of Disease.

[43]  L. Dassa,et al.  Directed elimination of senescent cells by inhibition of BCL-W and BCL-XL , 2016, Nature Communications.

[44]  M. Serrano,et al.  Mitochondrial Damage Induces Senescence with a Twisted Arm. , 2016, Cell metabolism.

[45]  A. Pezeshki,et al.  Naturally occurring p16Ink4a-positive cells shorten healthy lifespan , 2016, Nature.

[46]  N. Sharpless,et al.  Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice , 2015, Nature Medicine.

[47]  D. Baker,et al.  Cellular senescence in aging and age-related disease: from mechanisms to therapy , 2015, Nature Medicine.

[48]  A. Oudenaarden,et al.  Design and Analysis of Single-Cell Sequencing Experiments , 2015, Cell.

[49]  Clara Correia-Melo,et al.  Mitochondria: Are they causal players in cellular senescence? , 2015, Biochimica et biophysica acta.

[50]  N. Sharpless,et al.  Forging a signature of in vivo senescence , 2015, Nature Reviews Cancer.

[51]  C. Abbadie,et al.  The unfolded protein response and cellular senescence. A review in the theme: cellular mechanisms of endoplasmic reticulum stress signaling in health and disease. , 2015, American journal of physiology. Cell physiology.

[52]  S. Teichmann,et al.  Computational and analytical challenges in single-cell transcriptomics , 2015, Nature Reviews Genetics.

[53]  Kumar Sharma,et al.  Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development , 2014, Nature Medicine.

[54]  H. Moch,et al.  Metabolic activation of intrahepatic CD8+ T cells and NKT cells causes nonalcoholic steatohepatitis and liver cancer via cross-talk with hepatocytes. , 2014, Cancer cell.

[55]  M. Nakanishi,et al.  Necessary and sufficient role for a mitosis skip in senescence induction. , 2014, Molecular cell.

[56]  M. Jacomy,et al.  ForceAtlas2, a Continuous Graph Layout Algorithm for Handy Network Visualization Designed for the Gephi Software , 2014, PloS one.

[57]  J. Deursen The role of senescent cells in ageing , 2014, Nature.

[58]  E. Susaki,et al.  Whole-Brain Imaging with Single-Cell Resolution Using Chemical Cocktails and Computational Analysis , 2014, Cell.

[59]  Masahira Hattori,et al.  Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome , 2013, Nature.

[60]  T. Shlomi,et al.  A key role for mitochondrial gatekeeper pyruvate dehydrogenase in oncogene-induced senescence , 2013, Nature.

[61]  Darjus F. Tschaharganeh,et al.  Non-Cell-Autonomous Tumor Suppression by p53 , 2013, Cell.

[62]  David B. Darr,et al.  Monitoring Tumorigenesis and Senescence In Vivo with a p16 INK4a -Luciferase Model , 2013, Cell.

[63]  P. Rabinovitch,et al.  mTOR is a key modulator of ageing and age-related disease , 2013, Nature.

[64]  C. Tanaka,et al.  An improved mouse model that rapidly develops fibrosis in non-alcoholic steatohepatitis , 2013, International journal of experimental pathology.

[65]  V. Dulić Senescence regulation by mTOR. , 2013, Methods in molecular biology.

[66]  O. Lesur,et al.  Innate immunosenescence: effect of aging on cells and receptors of the innate immune system in humans. , 2012, Seminars in immunology.

[67]  Hiromitsu Araki,et al.  GeneSetDB: A comprehensive meta-database, statistical and visualisation framework for gene set analysis , 2012, FEBS open bio.

[68]  E. Pasquier,et al.  Endothelial cell dysfunction and cytoskeletal changes associated with repression of p16INK4a during immortalization , 2012, Oncogene.

[69]  N. LeBrasseur,et al.  Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders , 2011, Nature.

[70]  D. Peeper,et al.  The essence of senescence. , 2010, Genes & development.

[71]  M. Jensen,et al.  Fat tissue, aging, and cellular senescence , 2010, Aging cell.

[72]  E. Haddad,et al.  Ionizing radiation‐induced long‐term expression of senescence markers in mice is independent of p53 and immune status , 2010, Aging cell.

[73]  J. Campisi,et al.  The senescence-associated secretory phenotype: the dark side of tumor suppression. , 2010, Annual review of pathology.

[74]  I. Armando,et al.  The regulation of proximal tubular salt transport in hypertension: an update , 2009, Current opinion in nephrology and hypertension.

[75]  Masayuki Orimo,et al.  A crucial role for adipose tissue p53 in the regulation of insulin resistance , 2009, Nature Medicine.

[76]  H. Saya,et al.  Real-time in vivo imaging of p16Ink4a reveals cross talk with p53 , 2009, The Journal of cell biology.

[77]  Matthieu Piel,et al.  Regulation of Dendritic Cell Migration by CD74, the MHC Class II-Associated Invariant Chain , 2008, Science.

[78]  S. Lowe,et al.  Senescence of Activated Stellate Cells Limits Liver Fibrosis , 2008, Cell.

[79]  Robert B. Russell,et al.  SuperTarget and Matador: resources for exploring drug-target relationships , 2007, Nucleic Acids Res..

[80]  J. Campisi,et al.  Cellular senescence: when bad things happen to good cells , 2007, Nature Reviews Molecular Cell Biology.

[81]  M. Blasco,et al.  Cellular Senescence in Cancer and Aging , 2007, Cell.

[82]  K. Rajewsky,et al.  Excision of the Frt-flanked neoR cassette from the CD19cre knock-in transgene reduces Cre-mediated recombination , 2007, Transgenic Research.

[83]  I. Komuro,et al.  Vascular Cell Senescence: Contribution to Atherosclerosis , 2007, Circulation research.

[84]  I. Weissman,et al.  Clonal analysis of mouse development reveals a polyclonal origin for yolk sac blood islands. , 2006, Developmental cell.

[85]  M. Bennett,et al.  Vascular smooth muscle cell senescence in atherosclerosis. , 2006, Cardiovascular research.

[86]  D. Vestweber,et al.  Vascular endothelial cell–specific phosphotyrosine phosphatase (VE-PTP) activity is required for blood vessel development , 2006 .

[87]  Steffen Jung,et al.  A Cre-inducible diphtheria toxin receptor mediates cell lineage ablation after toxin administration , 2005, Nature Methods.

[88]  W. Reith,et al.  Conditional gene targeting in macrophages and granulocytes using LysMcre mice , 1999, Transgenic Research.

[89]  P. Bird,et al.  A retained selection cassette increases reporter gene expression without affecting tissue distribution in SPI3 knockout/GFP knock‐in mice , 2003, Genesis.

[90]  R. DePinho,et al.  p16(INK4a) and p53 deficiency cooperate in tumorigenesis. , 2002, Cancer research.

[91]  H. Takano,et al.  Senescent cells are resistant to death despite low Bcl-2 level , 2001, Mechanisms of Ageing and Development.

[92]  Johannes Gerdes,et al.  The Ki‐67 protein: From the known and the unknown , 2000, Journal of cellular physiology.

[93]  O. Pereira-smith,et al.  Replicative Senescence: Implications for in Vivo Aging and Tumor Suppression , 1996, Science.

[94]  F. Zindy,et al.  Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest , 1995, Cell.

[95]  C Roskelley,et al.  A biomarker that identifies senescent human cells in culture and in aging skin in vivo. , 1995, Proceedings of the National Academy of Sciences of the United States of America.