Calibration of dynamic models of biological systems with KInfer

Methods for parameter estimation that are robust to experimental uncertainties and to stochastic and biological noise and that require a minimum of a priori input knowledge are of key importance in computational systems biology. The new method presented in this paper aims to ensure an inference model that deduces the rate constants of a system of biochemical reactions from experimentally measured time courses of reactants. This new method was applied to some challenging parameter estimation problems of nonlinear dynamic biological systems and was tested both on synthetic and real data. The synthetic case studies are the 12-state model of the SERCA pump and a model of a genetic network containing feedback loops of interaction between regulator and effector genes. The real case studies consist of a model of the reaction between the inhibitor κB kinase enzyme and its substrate in the signal transduction pathway of NF-κB, and a stiff model of the fermentation pathway of Lactococcus lactis.

[1]  Paola Lecca,et al.  Inferring rate coefficents of biochemical reactions from noisy data with KInfer , 2008 .

[2]  E. Voit,et al.  Regulation of glycolysis in Lactococcus lactis: an unfinished systems biological case study. , 2006, Systems biology.

[3]  Masaru Tomita,et al.  Dynamic modeling of genetic networks using genetic algorithm and S-system , 2003, Bioinform..

[4]  Darren J. Wilkinson,et al.  Bayesian methods in bioinformatics and computational systems biology , 2006, Briefings Bioinform..

[5]  Maria Rodriguez-Fernandez,et al.  A hybrid approach for efficient and robust parameter estimation in biochemical pathways. , 2006, Bio Systems.

[6]  Darren J. Wilkinson,et al.  Bayesian inference for nonlinear multivariate diffusion models observed with error , 2008, Comput. Stat. Data Anal..

[7]  Paola Lecca,et al.  Deducing Chemical Reaction Rate Constants and Their Regions of Confidence from Noisy Measurements of Time Series of Concentration , 2009, 2009 11th International Conference on Computer Modelling and Simulation.

[8]  Mark A. Girolami,et al.  BioBayes: A software package for Bayesian inference in systems biology , 2008, Bioinform..

[9]  Ronald W. Davis,et al.  A genome-wide transcriptional analysis of the mitotic cell cycle. , 1998, Molecular cell.

[10]  Eberhard O. Voit,et al.  System estimation from metabolic time-series data , 2008, Bioinform..

[11]  Carmen G. Moles,et al.  Parameter estimation in biochemical pathways: a comparison of global optimization methods. , 2003, Genome research.

[12]  D S Broomhead,et al.  Synergistic control of oscillations in the NF-kappaB signalling pathway. , 2005, Systems biology.

[13]  Eberhard O Voit,et al.  Theoretical Biology and Medical Modelling Identification of Metabolic System Parameters Using Global Optimization Methods , 2022 .

[14]  Corrado Priami,et al.  The BlenX Language: A Tutorial , 2008, SFM.

[15]  Mudita Singhal,et al.  COPASI - a COmplex PAthway SImulator , 2006, Bioinform..

[16]  N. Green,et al.  The Mechanism of Ca 2 1 Transport by Sarco ( Endo ) plasmic Reticulum Ca 2 1-ATPases * , 1997 .

[17]  Georges Bastin,et al.  A maximum likelihood parameter estimation method for nonlinear dynamical systems , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[18]  Darren J. Wilkinson,et al.  Bayesian inference for a discretely observed stochastic kinetic model , 2008, Stat. Comput..

[19]  James R. Johnson,et al.  Oscillations in NF-κB Signaling Control the Dynamics of Gene Expression , 2004, Science.

[20]  Mark A. Girolami,et al.  Bayesian ranking of biochemical system models , 2008, Bioinform..

[21]  Eberhard O. Voit,et al.  Power-Law Approach to Modeling Biological Systems : I. Theory , 1982 .

[22]  Kwang-Hyun Cho,et al.  Experimental Design in Systems Biology, Based on Parameter Sensitivity Analysis Using a Monte Carlo Method: A Case Study for the TNFα-Mediated NF-κ B Signal Transduction Pathway , 2003, Simul..

[23]  Mudita Singhal,et al.  Simulation of Biochemical Networks using Copasi - A Complex Pathway Simulator , 2006, Proceedings of the 2006 Winter Simulation Conference.

[24]  N. Green,et al.  The Mechanism of Ca2+ Transport by Sarco(Endo)plasmic Reticulum Ca2+-ATPases* , 1997, The Journal of Biological Chemistry.

[25]  Michiel Kleerebezem,et al.  Effect of Different NADH Oxidase Levels on Glucose Metabolism by Lactococcus lactis: Kinetics of Intracellular Metabolite Pools Determined by In Vivo Nuclear Magnetic Resonance , 2002, Applied and Environmental Microbiology.

[26]  M. Tomita,et al.  Reverse engineering of biochemical equations from time-course data by means of genetic programming. , 2005, Bio Systems.

[27]  Eberhard O Voit,et al.  Theoretical Biology and Medical Modelling , 2022 .

[28]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[29]  L. Brunton,et al.  Excitation-contraction coupling and cardiac contractile force , 1992 .

[30]  Dominic Waithe,et al.  Bridging the gap between in silico and cell‐based analysis of the nuclear factor‐κB signaling pathway by in vitro studies of IKK2 , 2007, The FEBS journal.

[31]  G. Casella,et al.  Statistical Inference , 2003, Encyclopedia of Social Network Analysis and Mining.

[32]  Corrado Priami,et al.  The Beta Workbench: a computational tool to study the dynamics of biological systems , 2008, Briefings Bioinform..

[33]  Hamid Bolouri,et al.  Dizzy: Stochastic Simulation of Large-scale Genetic Regulatory Networks , 2005, J. Bioinform. Comput. Biol..

[34]  James Sneyd,et al.  A buffering SERCA pump in models of calcium dynamics. , 2006, Biophysical journal.

[35]  Eberhard O Voit,et al.  Theoretical Biology and Medical Modelling , 2022 .

[36]  Paola Lecca,et al.  A new probabilistic generative model of parameter inference in biochemical networks , 2009, SAC '09.

[37]  D. Stokes,et al.  Structure and function of the calcium pump. , 2003, Annual review of biophysics and biomolecular structure.

[38]  W. S. Hlavacek,et al.  Rules for coupled expression of regulator and effector genes in inducible circuits. , 1996, Journal of molecular biology.

[39]  K. Yano,et al.  Dual sensitivity of sarcoplasmic/endoplasmic Ca2+-ATPase to cytosolic and endoplasmic reticulum Ca2+ as a mechanism of modulating cytosolic Ca2+ oscillations. , 2004, The Biochemical journal.

[40]  I. Chou,et al.  Recent developments in parameter estimation and structure identification of biochemical and genomic systems. , 2009, Mathematical biosciences.

[41]  Donald M. Bers,et al.  Excitation-Contraction Coupling and Cardiac Contractile Force , 1991, Developments in Cardiovascular Medicine.

[42]  Junbin Gao,et al.  Simulated maximum likelihood method for estimating kinetic rates in gene expression , 2007, Bioinform..

[43]  Darren J. Wilkinson Stochastic Modelling for Systems Biology , 2006 .

[44]  K. Van Baelen,et al.  Dissection of the Functional Differences between Sarco(endo)plasmic Reticulum Ca2+-ATPase (SERCA) 1 and 3 Isoforms by Steady-state and Transient Kinetic Analyses* , 2002, The Journal of Biological Chemistry.

[45]  J Timmer,et al.  Parameter estimation in stochastic biochemical reactions. , 2006, Systems biology.

[46]  Jonas S. Almeida,et al.  Decoupling dynamical systems for pathway identification from metabolic profiles , 2004, Bioinform..