Uniform optimal-order estimates for finite element methods for advection-diffusion equations
暂无分享,去创建一个
Hong Wang | Qun Lin | Shuhua Zhang | Hong Wang | Q. Lin | Shuhua Zhang
[1] Cheng Hong-tao. Superclose and Extrapolation of the Tetrahedral Linear Finite Elements for Poisson Equation in Three-dimensional Rectangular Field , 2009 .
[2] Martin Stynes,et al. Numerical Treatment of Partial Differential Equations , 2007 .
[3] HONG WANG,et al. Uniform Estimates for Eulerian-Lagrangian Methods for Singularly Perturbed Time-Dependent Problems , 2007, SIAM J. Numer. Anal..
[4] Q. Lin,et al. Superconvergence and extrapolation of non-conforming low order finite elements applied to the Poisson equation , 2005 .
[5] Peter Knabner,et al. Uniform Error Analysis for Lagrange-Galerkin Approximations of Convection-Dominated Problems , 2001, SIAM J. Numer. Anal..
[6] Hong Wang,et al. An Optimal-Order Error Estimate for an ELLAM Scheme for Two-Dimensional Linear Advection-Diffusion Equations , 2000, SIAM J. Numer. Anal..
[7] Chieh-Sen Huang,et al. The modified method of characteristics with adjusted advection , 1999, Numerische Mathematik.
[8] Rolf Stenberg,et al. Finite element methods: superconvergence, post-processing, and a posteriori estimates , 1998 .
[9] M. Wheeler,et al. A characteristics-mixed finite element method for advection-dominated transport problems , 1995 .
[10] T. F. Russell,et al. Eulerian-Lagrangian localized adjoint methods for convection-diffusion equations and their convergence analysis , 1994 .
[11] W. D. Evans,et al. PARTIAL DIFFERENTIAL EQUATIONS , 1941 .