Real-Time Binaural Rendering with Virtual Vector Base Amplitude Panning

We present a virtual vector base amplitude panning (VBAP) implementation for 3D head-tracked binaural rendering on an embedded Linux system. Three degrees of freedom head-tracking is implemented within acceptable levels of latency and at 1◦ angular resolution. The technical performance of virtual VBAP is evaluated alongside a First Order Ambisonics (FOA) approach on the same platform, using analysis of localisation cue error against a human-measured head-related transfer function set. Our findings illustrate that, in scenarios utilising embedded or other portable, low-resource computing platforms, the nature and requirements of the immersive or interactive audio application at hand may determine whether virtual VBAP is a viable (or even preferable) approach compared to virtual FOA.

[1]  Brian F G Katz,et al.  A comparative study of Interaural Time Delay estimation methods. , 2014, The Journal of the Acoustical Society of America.

[2]  Bruce Wiggins,et al.  Analysis of binaural cue matching using ambisonics to binaural decoding techniques , 2017 .

[3]  Mikko-Ville Laitinen,et al.  Binaural reproduction for Directional Audio Coding , 2009, 2009 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics.

[4]  Ville Pulkki,et al.  Evaluating spatial sound with binaural auditory model , 2001, ICMC.

[5]  Gaëtan Parseihian,et al.  Perceptually based head-related transfer function database optimization. , 2012, The Journal of the Acoustical Society of America.

[6]  Michael A. Gerzon,et al.  Ambisonics. Part two: Studio techniques , 1975 .

[7]  Yukio Iwaya,et al.  Effect of Large System Latency of Virtual Auditory Display on Listener's Head Movement in Sound Localization Task , 2007 .

[8]  Peter Fellgett,et al.  Ambisonics. Part one: General system description , 1975 .

[9]  Gavin Kearney,et al.  A Direct Comparison of Localization Performance When Using First, Third, and Fifth Ambisonics Order for Real Loudspeaker and Virtual Loudspeaker Rendering , 2017 .

[10]  Gavin Kearney,et al.  Height Perception in Ambisonic Based Binaural Decoding , 2015 .

[11]  Andrew P. McPherson,et al.  Action-Sound Latency: Are Our Tools Fast Enough? , 2016, NIME.

[12]  David Stanley Mcgrath,et al.  Sound Field Format to Binaural Decoder with Head Tracking , 1996 .

[13]  Mark R. Anderson,et al.  Direct comparison of the impact of head tracking, reverberation, and individualized head-related transfer functions on the spatial perception of a virtual speech source. , 2001, Journal of the Audio Engineering Society. Audio Engineering Society.

[14]  Lorenzo Picinali,et al.  Comparative Perceptual Evaluation between Different Methods for Implementing Reverberation in a Binaural Context , 2017 .

[15]  Durand R. Begault,et al.  3-D Sound for Virtual Reality and Multimedia Cambridge , 1994 .

[16]  J. Blauert Spatial Hearing: The Psychophysics of Human Sound Localization , 1983 .

[17]  Franz Zotter,et al.  Implementation and Evaluation of a Low-Cost Headtracker for Binaural Synthesis , 2017 .

[18]  Robert Höldrich,et al.  3D binaural sound reproduction using a virtual ambisonic approach , 2003, IEEE International Symposium on Virtual Environments, Human-Computer Interfaces and Measurement Systems, 2003. VECIMS '03. 2003.

[19]  Ville Pulkki,et al.  Virtual Sound Source Positioning Using Vector Base Amplitude Panning , 1997 .

[20]  Agnieszka Roginska,et al.  User Selection of Optimal HRTF Sets via Holistic Comparative Evaluation , 2018 .