Black-hole binaries, gravitational waves, and numerical relativity
暂无分享,去创建一个
Joan M. Centrella | Bernard J. Kelly | James R. van Meter | J. Centrella | J. Baker | John G. Baker | J. V. Meter | B. Kelly
[1] Erik Schnetter,et al. High accuracy binary black hole simulations with an extended wave zone , 2009, 0910.3803.
[2] M Hannam,et al. Inspiral-merger-ringdown waveforms for black-hole binaries with nonprecessing spins. , 2009, Physical review letters.
[3] M. Miller,et al. TEST OF A GENERAL FORMULA FOR BLACK HOLE GRAVITATIONAL WAVE KICKS , 2010, 1003.3865.
[4] D. Shoemaker,et al. RELATIVISTIC MERGERS OF SUPERMASSIVE BLACK HOLES AND THEIR ELECTROMAGNETIC SIGNATURES , 2009, 0912.0087.
[5] S. McWilliams,et al. Impact of mergers on LISA parameter estimation for nonspinning black hole binaries , 2009, 0911.1078.
[6] S. McWilliams,et al. MODELING FLOWS AROUND MERGING BLACK HOLE BINARIES , 2009, 0908.0023.
[7] Yi Pan,et al. Effective-one-body waveforms calibrated to numerical relativity simulations: coalescence of nonspinning, equal-mass black holes , 2009, 0902.0790.
[8] Frank Herrmann,et al. Comparisons of eccentric binary black hole simulations with post-Newtonian models , 2008, 0806.1037.
[9] Yi Pan,et al. Effective-one-body waveforms calibrated to numerical relativity simulations: coalescence of non-precessing, spinning, equal-mass black holes , 2009, 0912.3466.
[10] C. Will,et al. The gravitational-wave recoil from the ringdown phase of coalescing black hole binaries , 2009, 0910.4594.
[11] G. Schaefer. Post-Newtonian Methods: Analytic Results on the Binary Problem , 2009, 0910.2857.
[12] O. Rinne. An axisymmetric evolution code for the Einstein equations on hyperboloidal slices , 2009, 0910.0139.
[13] Mark A. Scheel,et al. Simulations of Binary Black Hole Mergers Using Spectral Methods , 2009, 0909.3557.
[14] F. Pretorius,et al. Fundamental theoretical bias in gravitational wave astrophysics and the parametrized post-Einsteinian framework , 2009, 0909.3328.
[15] High accuracy simulations of black hole binaries: Spins anti-aligned with the orbital angular momentum , 2009, 0909.1313.
[16] S. Husa,et al. Bowen-York trumpet data and black-hole simulations , 2009, 0908.1063.
[17] S. Burke-Spolaor,et al. Timing stability of millisecond pulsars and prospects for gravitational-wave detection , 2009, 0908.0244.
[18] David Blair,et al. Search for gravitational waves from low mass compact binary coalescence in 186 days of LIGO's fifth science run , 2009 .
[19] T. Bulik,et al. Observational evidence for stellar mass binary black holes and their coalescence rate , 2009, 0907.5515.
[20] P. Marshall,et al. Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE QUASAR SDSS J105041.35+345631.3: BLACK HOLE RECOIL OR EXTREME DOUBLE-PEAKED EMITTER? , 2022 .
[21] B. Szilágyi,et al. Unambiguous determination of gravitational waveforms from binary black hole mergers. , 2009, Physical review letters.
[22] Frans Pretorius,et al. Cross section, final spin, and zoom-whirl behavior in high-energy black-hole collisions. , 2009, Physical review letters.
[23] Yi Pan,et al. Comparison of post-Newtonian templates for compact binary inspiral signals in gravitational-wave detectors , 2009, 0907.0700.
[24] L. Blanchet. Post-Newtonian Theory and the Two-Body Problem , 2009, 0907.3596.
[25] O. Jennrich,et al. LISA technology and instrumentation , 2009, 0906.2901.
[26] Thibault Damour,et al. The Effective One-Body Description of the Two-Body Problem , 2009, 0906.1769.
[27] E. Quataert,et al. Fossil gas and the electromagnetic precursor of supermassive binary black hole mergers , 2009, 0906.0825.
[28] J. K. Blackburn,et al. Search for Gravitational Waves from Low Mass Compact Binary Coalescence in 186 Days of LIGO's fifth Science Run , 2009, 0905.3710.
[29] L. Lehner,et al. Perturbed disks get shocked. Binary black hole merger effects on accretion disks , 2009, 0905.3390.
[30] Vitor Cardoso,et al. Quasinormal modes of black holes and black branes , 2009, 0905.2975.
[31] C. Palenzuela,et al. Binary black holes' effects on electromagnetic fields. , 2009, Physical review letters.
[32] Y. Zlochower,et al. Remnant masses, spins and recoils from the merger of generic black hole binaries , 2009, 0904.3541.
[33] Z. Haiman,et al. THE POPULATION OF VISCOSITY- AND GRAVITATIONAL WAVE-DRIVEN SUPERMASSIVE BLACK HOLE BINARIES AMONG LUMINOUS ACTIVE GALACTIC NUCLEI , 2009, 0904.1383.
[34] Manuel Tiglio,et al. Orbiting binary black hole evolutions with a multipatch high order finite-difference approach , 2009, 0904.0493.
[35] M. Colpi,et al. Massive black hole binary evolution in gas-rich mergers , 2009, 0904.0385.
[36] Mark Trodden,et al. Approaches to understanding cosmic acceleration , 2009, 0904.0024.
[37] Wojciech H. Zurek,et al. John Wheeler, relativity, and quantum information , 2009 .
[38] S. Hughes. Gravitational Waves from Merging Compact Binaries , 2009, 0903.4877.
[39] Nicolas Gagarin,et al. Methods for detection and characterization of signals in noisy data with the Hilbert-Huang Transform , 2009, ArXiv.
[40] L. Ho,et al. X-RAY PROPERTIES OF INTERMEDIATE-MASS BLACK HOLES IN ACTIVE GALAXIES. II. X-RAY-BRIGHT ACCRETION AND POSSIBLE EVIDENCE FOR SLIM DISKS , 2009, 0903.2257.
[41] S. D. Mink,et al. The evolution of runaway stellar collision products , 2009, 0902.1753.
[42] Thibault Damour,et al. Improved analytical description of inspiralling and coalescing black-hole binaries , 2009, 0902.0136.
[43] J. Smith,et al. The path to the enhanced and advanced LIGO gravitational-wave detectors , 2009, 0902.0381.
[44] P. Ajith,et al. Estimating the parameters of nonspinning binary black holes using ground-based gravitational-wave detectors: Statistical errors , 2009, 0901.4936.
[45] B. Krishnan,et al. Searching for numerically simulated signals from black-hole binaries with a phenomenological template family , 2009, 0901.4696.
[46] Michael Boyle,et al. Testing gravitational-wave searches with numerical relativity waveforms: results from the first Numerical INJection Analysis (NINJA) project , 2009, 0901.4399.
[47] Mark Hannam,et al. Status of black-hole-binary simulations for gravitational-wave detection , 2009, 0901.2931.
[48] Michael Boyle,et al. Samurai project: Verifying the consistency of black-hole-binary waveforms for gravitational-wave detection , 2009, 0901.2437.
[49] Duncan A. Brown,et al. Comparison of high-accuracy numerical simulations of black-hole binaries with stationary-phase post-Newtonian template waveforms for initial and advanced LIGO , 2009, 0901.1628.
[50] B. Bruegmann,et al. Numerical black hole initial data with low eccentricity based on post-Newtonian orbital parameters , 2009, 0901.0993.
[51] REACTION OF ACCRETION DISKS TO ABRUPT MASS LOSS DURING BINARY BLACK HOLE MERGER , 2008, 0812.4874.
[52] Lawrence E. Kidder,et al. Recoil velocity at second post-Newtonian order for spinning black hole binaries , 2008, 0812.4413.
[53] M. Miller. Intermediate-mass black holes as LISA sources , 2008, 0812.3028.
[54] José A. González,et al. B lack-hole binary sim ulations: the m ass ratio 10:1 , 2008, 0811.3952.
[55] S. McWilliams,et al. LISA parameter estimation using numerical merger waveforms , 2008, 0811.0833.
[56] A. Sesana,et al. LISA detection of massive black hole binaries: imprint of seed populations and extreme recoils , 2008, 0810.5554.
[57] Lawrence E. Kidder,et al. High-accuracy waveforms for binary black hole inspiral, merger, and ringdown , 2008, 0810.1767.
[58] A. Vecchio,et al. Gravitational waves from resolvable massive black hole binary systems and observations with Pulsar Timing Arrays , 2008, 0809.3412.
[59] Hiroyuki Nakano,et al. Comparison of Numerical and Post-Newtonian Waveforms for Generic Precessing Black-Hole Binaries , 2008, 0808.0713.
[60] Carlos O. Lousto,et al. Modeling gravitational recoil from precessing highly spinning unequal-mass black-hole binaries , 2008, 0805.0159.
[61] M. Colpi,et al. Physics of relativistic objects in compact binaries: from birth to coalescence , 2009 .
[62] Rainer Spurzem,et al. BINARY BLACK HOLE MERGER IN GALACTIC NUCLEI: POST-NEWTONIAN SIMULATIONS , 2008, 0812.2756.
[63] L. Rezzolla. Modelling the final state from binary black-hole coalescences , 2008, 0812.2325.
[64] Z. Frei,et al. Identifying decaying supermassive black hole binaries from their variable electromagnetic emission , 2008, 0811.1920.
[65] Edward K. Porter,et al. Massive black-hole binary inspirals: results from the LISA parameter estimation taskforce , 2008, 0811.1011.
[66] C. Mishra,et al. LISA as a dark energy probe , 2008, 0810.5727.
[67] R. Lang,et al. Advanced localization of massive black hole coalescences with LISA , 2008, 0810.5125.
[68] Masaru Shibata,et al. High-velocity collision of two black holes , 2008, 0810.4735.
[69] Duncan A. Brown,et al. Model waveform accuracy standards for gravitational wave data analysis , 2008, 0809.3844.
[70] Caltech,et al. IMEX evolution of scalar fields on curved backgrounds , 2008, 0808.2597.
[71] P. Marronetti,et al. Final mass and spin of black-hole mergers , 2008, 0807.2985.
[72] S. Babak,et al. Resolving Super Massive Black Holes with LISA , 2008, 0806.1591.
[73] Frans Pretorius,et al. High-energy collision of two black holes. , 2008, Physical review letters.
[74] G. Lovelace,et al. Binary-black-hole initial data with nearly extremal spins , 2008, 0805.4192.
[75] P. Ajith,et al. Template bank for gravitational waveforms from coalescing binary black holes: Nonspinning binaries , 2008 .
[76] Bernard J. Kelly,et al. Mergers of non-spinning black-hole binaries: Gravitational radiation characteristics , 2008, 0805.1428.
[77] A. Loeb,et al. Effects of gravitational-wave recoil on the dynamics and growth of supermassive black holes , 2008, 0805.1420.
[78] S. Komossa,et al. A Recoiling Supermassive Black Hole in the Quasar SDSS J092712.65+294344.0? , 2008, 0804.4585.
[79] A. Vecchio,et al. The stochastic gravitational-wave background from massive black hole binary systems: implications for observations with Pulsar Timing Arrays , 2008, 0804.4476.
[80] Lawrence E. Kidder,et al. High-accuracy numerical simulation of black-hole binaries: Computation of the gravitational-wave energy flux and comparisons with post-Newtonian approximants , 2008, 0804.4184.
[81] M. Miller,et al. MERGERS OF STELLAR-MASS BLACK HOLES IN NUCLEAR STAR CLUSTERS , 2008, 0804.2783.
[82] A. Perreca,et al. Triple Michelson interferometer for a third-generation gravitational wave detector , 2008, 0804.1036.
[83] F. Ohme,et al. Wormholes and trumpets: Schwarzschild spacetime for the moving-puncture generation , 2008, 0804.0628.
[84] A. Sintes,et al. LISA parameter estimation of supermassive black holes , 2008, 0804.0492.
[85] S. Djorgovski,et al. The origins and the early evolution of quasars and supermassive black holes , 2008, 0803.2862.
[86] A. Loeb,et al. Brightening of an accretion disk due to viscous dissipation of gravitational waves during the coalescence of supermassive black holes. , 2008, Physical review letters.
[87] T. Damour. Introductory lectures on the Effective One Body formalism , 2008, 0802.4047.
[88] J. Krolik,et al. The Infrared Afterglow of Supermassive Black Hole Mergers , 2008, 0802.3556.
[89] B. Iyer,et al. The third post-Newtonian gravitational wave polarizations and associated spherical harmonic modes for inspiralling compact binaries in quasi-circular orbits , 2008, 0802.1249.
[90] S. McWilliams,et al. Modeling Kicks from the Merger of Generic Black Hole Binaries , 2008, 0802.0416.
[91] M. Alcubierre,et al. Hyperbolicity of scalar-tensor theories of gravity , 2008, 0801.2372.
[92] Ny,et al. Prompt Shocks in the Gas Disk around a Recoiling Supermassive Black Hole Binary , 2008, 0801.0739.
[93] Sascha Husa,et al. Comparison between numerical-relativity and post-Newtonian waveforms from spinning binaries: The orbital hang-up case , 2007, 0712.3787.
[94] L. Rezzolla,et al. PREDICTING THE DIRECTION OF THE FINAL SPIN FROM THE COALESCENCE OF TWO BLACK HOLES , 2007, 0904.2577.
[95] T. Damour,et al. Faithful Effective-One-Body waveforms of equal-mass coalescing black-hole binaries , 2007, 0712.3003.
[96] M. Kesden,et al. Spin expansion for binary black hole mergers: New predictions and future directions , 2007, 0712.2819.
[97] Z. Haiman,et al. Premerger Localization of Gravitational Wave Standard Sirens with LISA: Triggered Search for an Electromagnetic Counterpart , 2007, 0712.1144.
[98] P. Ajith. Gravitational-wave data analysis using binary black-hole waveforms , 2007, 0712.0343.
[99] T. Damour,et al. Comparing effective-one-body gravitational waveforms to accurate numerical data , 2007, 0711.2628.
[100] Y. Zlochower,et al. Foundations of multiple black hole evolutions , 2007, 0711.1165.
[101] B. Bruegmann,et al. Multipolar analysis of spinning binaries , 2007, 0711.1097.
[102] D. Shoemaker,et al. Robustness of binary black hole mergers in the presence of spurious radiation , 2007, 0711.0669.
[103] M. Ansorg,et al. Eccentric binary black-hole mergers: The transition from inspiral to plunge in general relativity , 2007, 0710.3823.
[104] Ernst Nils Dorband,et al. The Final Spin from the Coalescence of Aligned-Spin Black Hole Binaries , 2007, 0710.3345.
[105] Lawrence E. Kidder,et al. Using full information when computing modes of post-Newtonian waveforms from inspiralling compact binaries in circular orbit , 2007, 0710.0614.
[106] Lawrence E. Kidder,et al. Estimating the final spin of a binary black hole coalescence , 2007, 0709.3839.
[107] P. Marronetti,et al. High-spin binary black hole mergers , 2007, 0709.2160.
[108] S. Nissanke,et al. Binary-black-hole merger: symmetry and the spin expansion. , 2007, Physical review letters.
[109] José A. González,et al. Exploring black hole superkicks , 2007, 0707.0135.
[110] S. McWilliams,et al. Anatomy of the Binary Black Hole Recoil: A Multipolar Analysis , 2007, 0707.0301.
[111] José A. González,et al. Where post-Newtonian and numerical-relativity waveforms meet , 2007, 0706.1305.
[112] José A. González,et al. Reducing eccentricity in black-hole binary evolutions with initial parameters from post-Newtonian inspiral , 2007, 0706.0904.
[113] José A. González,et al. Reducing phase error in long numerical binary black hole evolutions with sixth-order finite differencing , 2007, 0706.0740.
[114] J. D. Brown. Puncture evolution of Schwarzschild black holes , 2007, 0705.1359.
[115] S. McWilliams,et al. A data-analysis driven comparison of analytic and numerical coalescing binary waveforms: nonspinning case , 2007, 0704.1964.
[116] P. Brady,et al. Learning about compact binary merger: The Interplay between numerical relativity and gravitational-wave astronomy , 2006, gr-qc/0612100.
[117] José A. González,et al. Calibration of moving puncture simulations , 2006, gr-qc/0610128.
[118] Miguel Alcubierre,et al. Introduction to 3+1 Numerical Relativity , 2008 .
[119] Yale University,et al. Powerful Flares from Recoiling Black Holes in Quasars , 2007, 0802.3873.
[120] Frank Herrmann,et al. Circularization and final spin in eccentric binary-black-hole inspirals , 2007, 0710.5167.
[121] R. Lang,et al. Localizing Coalescing Massive Black Hole Binaries with Gravitational Waves , 2007, 0710.3795.
[122] Frans Pretorius,et al. Binary Black Hole Coalescence , 2007, 0710.1338.
[123] Michael Boyle,et al. High-accuracy comparison of numerical relativity simulations with post-Newtonian expansions , 2007, 0710.0158.
[124] Jaime S. Cardoso,et al. Matched-filtering and parameter estimation of ringdown waveforms , 2007, 0707.1202.
[125] B. Krishnan,et al. Quasilocal Linear Momentum in Black-Hole Binaries , 2007, 0707.0876.
[126] S. McWilliams,et al. Toward faithful templates for non-spinning binary black holes using the effective-one-body approach , 2007, 0706.3732.
[127] J. Schnittman. Retaining Black Holes with Very Large Recoil Velocities , 2007, 0706.1548.
[128] G. Shields,et al. Recoiling Black Holes in Quasars , 2007, 0705.4263.
[129] Matched filtering of numerical relativity templates of spinning binary black holes , 2007, 0705.3829.
[130] P. Ajith,et al. A phenomenological template family for black-hole coalescence waveforms , 2007, 0704.3764.
[131] S. Phinney,et al. Variability in Circumbinary Disks Following Massive Black Hole Mergers , 2007 .
[132] B. Whiting,et al. Black-hole puncture initial data with realistic gravitational wave content , 2007, 0704.0628.
[133] P. Marronetti,et al. Binary black hole mergers: Large kicks for generic spin orientations , 2007, gr-qc/0703075.
[134] José A. González,et al. Inspiral, merger, and ringdown of unequal mass black hole binaries: A multipolar analysis , 2007, gr-qc/0703053.
[135] M. Volonteri. Gravitational Recoil: Signatures on the Massive Black Hole Population , 2007, astro-ph/0703180.
[136] E. Gourgoulhon. 3+1 Formalism and Bases of Numerical Relativity , 2007, gr-qc/0703035.
[137] Y. Zlochower,et al. Maximum gravitational recoil. , 2007, Physical review letters.
[138] Lawrence E. Kidder,et al. Reducing orbital eccentricity in binary black hole simulations , 2007, gr-qc/0702106.
[139] F. Pretorius,et al. Black hole mergers and unstable circular orbits , 2007, gr-qc/0702084.
[140] S. McWilliams,et al. Modeling Kicks from the Merger of Nonprecessing Black Hole Binaries , 2007, astro-ph/0702390.
[141] José A. González,et al. Supermassive recoil velocities for binary black-hole mergers with antialigned spins. , 2007, Physical review letters.
[142] R. O’Shaughnessy,et al. Dynamical interactions and the black-hole merger rate of the Universe , 2007, astro-ph/0701887.
[143] Y. Zlochower,et al. Large Merger Recoils and Spin Flips from Generic Black Hole Binaries , 2007, gr-qc/0701164.
[144] Erik Schnetter,et al. Recoil velocities from equal-mass binary-black-hole mergers. , 2007, Physical review letters.
[145] J. Cannizzo,et al. Application of the Hilbert-Huang Transform to the Search for Gravitational Waves , 2007, gr-qc/0701148.
[146] Richard A. Matzner,et al. Gravitational Recoil from Spinning Binary Black Hole Mergers , 2007, gr-qc/0701143.
[147] Columbia,et al. Premerger localization of gravitational-wave standard sirens with LISA: Harmonic mode decomposition , 2007, astro-ph/0701629.
[148] Alberto Sesana,et al. The imprint of massive black hole formation models on the LISA data stream , 2007, astro-ph/0701556.
[149] T. Baumgarte,et al. Analytical representation of a black hole puncture solution , 2007, gr-qc/0701037.
[150] Y. Zlochower,et al. Comparisons of binary black hole merger waveforms , 2007, gr-qc/0701016.
[151] S. McWilliams,et al. Binary black hole late inspiral: Simulations for gravitational wave observations , 2006, gr-qc/0612117.
[152] B. Krishnan,et al. Spin Flips and Precession in Black-Hole-Binary Mergers , 2006, gr-qc/0612076.
[153] S. McWilliams,et al. Consistency of post-Newtonian waveforms with numerical relativity. , 2006, Physical review letters.
[154] A. Goobar,et al. Tuning Gravitationally Lensed Standard Sirens , 2006, astro-ph/0611334.
[155] José A. González,et al. Maximum kick from nonspinning black-hole binary inspiral. , 2006, Physical review letters.
[156] A. Buonanno,et al. Inspiral, merger and ring-down of equal-mass black-hole binaries , 2006, gr-qc/0610122.
[157] Lawrence E. Kidder,et al. Testing the accuracy and stability of spectral methods in numerical relativity , 2006, gr-qc/0609047.
[158] S. Husa,et al. Geometry and regularity of moving punctures. , 2006, Physical review letters.
[159] S. Husa,et al. Where do moving punctures go , 2006, gr-qc/0612097.
[160] Y. Zlochower,et al. Spin-orbit interactions in black-hole binaries , 2006, astro-ph/0608275.
[161] R. Lang,et al. Measuring coalescing massive binary black holes with gravitational waves: The impact of spin-induced precession , 2006, gr-qc/0608062.
[162] Lawrence E. Kidder,et al. Solving Einstein's equations with dual coordinate frames , 2006, gr-qc/0607056.
[163] J. McClintock,et al. X-Ray Properties of Black-Hole Binaries , 2006, astro-ph/0606352.
[164] On the search of electromagnetic cosmological counterparts to coalescences of massive black hole binaries , 2006, astro-ph/0605624.
[165] H. Pfeiffer,et al. Circular orbits and spin in black-hole initial data , 2006, gr-qc/0605053.
[166] M. Koppitz,et al. How to move a black hole without excision: Gauge conditions for the numerical evolution of a moving puncture , 2006, gr-qc/0605030.
[167] C. Gundlach,et al. Well-posedness of formulations of the Einstein equations with dynamical lapse and shift conditions , 2006, gr-qc/0604035.
[168] Y. Zlochower,et al. Spinning-black-hole binaries: The orbital hang-up , 2006, gr-qc/0604012.
[169] National Radio Astronomy Observatory,et al. A Compact Supermassive Binary Black Hole System , 2006, astro-ph/0604042.
[170] B. Bruegmann,et al. Binary Black Hole Evolutions with Moving Punctures: Methods and Numerical Codes. , 2006 .
[171] B. Iyer,et al. Testing post-Newtonian theory with gravitational wave observations , 2006, gr-qc/0604018.
[172] C. Misner,et al. Excising das All: Evolving Maxwell waves beyond Scri , 2006, gr-qc/0603034.
[173] Dae-Il Choi,et al. Getting a Kick Out of Numerical Relativity , 2006, astro-ph/0603204.
[174] Frans Pretorius,et al. Simulation of binary black hole spacetimes with a harmonic evolution scheme , 2006, gr-qc/0602115.
[175] T. Damour,et al. Gravitational recoil during binary black hole coalescence using the effective one body approach , 2006, gr-qc/0602117.
[176] Dae-Il Choi,et al. Binary black hole merger dynamics and waveforms , 2006, gr-qc/0602026.
[177] Y. Zlochower,et al. Last orbit of binary black holes , 2006, gr-qc/0601091.
[178] D. Holz,et al. Short GRB and binary black hole standard sirens as a probe of dark energy , 2006, astro-ph/0601275.
[179] D. Shoemaker,et al. Unequal mass binary black hole plunges and gravitational recoil , 2006, gr-qc/0601026.
[180] A. Merloni,et al. Growing Black Holes: Accretion in a Cosmological Context: Proceedings of the MPA / ESO / MPE / USM Joint Astronomy Conference Held at Garching, Germany, 21-25 June 2004 , 2006 .
[181] F. Rasio,et al. Massive Black Hole Binaries from Collisional Runaways , 2005, astro-ph/0512642.
[182] Dae-Il Choi,et al. Gravitational-wave extraction from an inspiraling configuration of merging black holes. , 2005, Physical review letters.
[183] Y. Zlochower,et al. Accurate evolutions of orbiting black-hole binaries without excision. , 2005, Physical review letters.
[184] Z. Frei,et al. Finding the Electromagnetic Counterparts of Cosmological Standard Sirens , 2005, astro-ph/0505394.
[185] Lawrence E. Kidder,et al. A new generalized harmonic evolution system , 2005, gr-qc/0512093.
[186] C. Will,et al. Gravitational Recoil of Inspiraling Black Hole Binaries to Second Post-Newtonian Order , 2005, astro-ph/0507692.
[187] F. Pretorius. Evolution of binary black-hole spacetimes. , 2005, Physical review letters.
[188] E. Schnetter,et al. Black hole head-on collisions and gravitational waves with fixed mesh-refinement and dynamic singularity excision , 2005 .
[189] H. Pfeiffer,et al. Uniqueness and nonuniqueness in the Einstein constraints. , 2005, Physical review letters.
[190] Daniel E. Holz,et al. Using Gravitational-Wave Standard Sirens , 2005, astro-ph/0504616.
[191] I. Hinder,et al. Constraint damping in the Z4 formulation and harmonic gauge , 2005, gr-qc/0504114.
[192] C. Lousto. Understanding the fate of merging supermassive black holes , 2005 .
[193] S. Hughes,et al. The basics of gravitational wave theory , 2005, gr-qc/0501041.
[194] Laura Ferrarese,et al. Supermassive Black Holes in Galactic Nuclei: Past, Present and Future Research , 2004, astro-ph/0411247.
[195] E. Phinney,et al. The Afterglow of Massive Black Hole Coalescence , 2004, astro-ph/0410343.
[196] D. Holz,et al. How black holes get their kicks: radiation recoil in binary black hole mergers , 2004, astro-ph/0408492.
[197] F. Pretorius. Numerical relativity using a generalized harmonic decomposition , 2004, gr-qc/0407110.
[198] A. Merloni,et al. Preface (Growing black holes: accretion in a cosmological context) , 2005 .
[199] C. Bona,et al. Elements of numerical relativity , 2005 .
[200] B. F. Whiting,et al. A Relativist's Toolkit, The Mathematics of Black-Hole Mechanics , 2004 .
[201] J. Camp,et al. GRAVITATIONAL WAVE ASTRONOMY , 2004 .
[202] H. Pfeiffer,et al. Excision boundary conditions for black-hole initial data , 2004, gr-qc/0407078.
[203] J. Taylor,et al. Relativistic binary pulsar B1913+16: Thirty years of observations and analysis , 2004, astro-ph/0407149.
[204] E. Poisson. A Relativist's Toolkit: The Mathematics of Black-Hole Mechanics , 2004 .
[205] Oscar A. Reula. STRONGLY HYPERBOLIC SYSTEMS IN GENERAL RELATIVITY , 2004, gr-qc/0403007.
[206] E. Colbert,et al. Observational Evidence for Intermediate-Mass Black Holes in Ultra-luminous X-ray Sources , 2004, astro-ph/0402677.
[207] Oscar A. Reula,et al. Strongly hyperbolic second order Einstein's evolution equations , 2004, gr-qc/0402123.
[208] D. Holz,et al. How Black Holes Get Their Kicks: Gravitational Radiation Recoil Revisited , 2004, astro-ph/0402056.
[209] S. Shapiro,et al. Relativistic hydrodynamic evolutions with black hole excision , 2004, gr-qc/0401076.
[210] B. Brügmann,et al. Numerical simulation of orbiting black holes. , 2003, Physical review letters.
[211] Jonathan Thornburg,et al. A Fast Apparent‐Horizon Finder for 3‐Dimensional Cartesian Grids in Numerical Relativity , 2003, gr-qc/0306056.
[212] C. Lousto,et al. Coalescence remnant of spinning binary black holes , 2003, astro-ph/0305287.
[213] S. Komossa. Observational evidence for supermassive black hole binaries , 2003, astro-ph/0306439.
[214] Moving black holes via singularity excision , 2003, gr-qc/0301111.
[215] S. Shapiro,et al. Numerical relativity and compact binaries , 2002, gr-qc/0211028.
[216] P. Diener,et al. Binary black hole initial data for numerical general relativity based on post-Newtonian data , 2002, gr-qc/0207011.
[217] E. Seidel,et al. Gauge conditions for long-term numerical black hole evolutions without excision , 2002, gr-qc/0206072.
[218] E. Seidel,et al. Three-dimensional distorted black holes , 2002, gr-qc/0206070.
[219] B. Krishnan,et al. Introduction to isolated horizons in numerical relativity , 2002, gr-qc/0206008.
[220] A. Buonanno,et al. Detection template families for gravitational waves from the final stages of binary--black-hole inspirals: Nonspinning case , 2002, gr-qc/0205122.
[221] Lawrence E. Kidder,et al. A Multidomain spectral method for solving elliptic equations , 2002, gr-qc/0202096.
[222] S. Komossa,et al. Discovery of a Binary Active Galactic Nucleus in the Ultraluminous Infrared Galaxy NGC 6240 Using Chandra , 2002, astro-ph/0212099.
[223] The Relativistic binary pulsar B1913+16 , 2002, astro-ph/0211217.
[224] S. Shapiro,et al. Improved numerical stability of stationary black hole evolution calculations , 2002, gr-qc/0209066.
[225] O. Sarbach,et al. Hyperbolicity of the Baumgarte-Shapiro-Shibata-Nakamura system of Einstein evolution equations , 2002 .
[226] O. Sarbach,et al. Convergence and stability in numerical relativity , 2002, gr-qc/0207018.
[227] O. Sarbach,et al. Stability properties of a formulation of Einstein's equations , 2002, gr-qc/0205073.
[228] O. Sarbach,et al. Hyperbolicity of the BSSN system of Einstein evolution equations , 2002, gr-qc/0205064.
[229] C. Lousto,et al. Modeling gravitational radiation from coalescing binary black holes , 2002, astro-ph/0202469.
[230] R.Takahashi,et al. New conformally flat initial data for spinning black holes , 2002, gr-qc/0201062.
[231] P. Armitage,et al. Accretion during the Merger of Supermassive Black Holes , 2002, astro-ph/0201318.
[232] S. Giddings,et al. Classical black hole production in high-energy collisions , 2002, gr-qc/0201034.
[233] Simon F. Portegies Zwart,et al. The Runaway Growth of Intermediate-Mass Black Holes in Dense Star Clusters , 2002, astro-ph/0201055.
[234] D. Garfinkle. Harmonic coordinate method for simulating generic singularities , 2001, gr-qc/0110013.
[235] G. B. Cook. Corotating and irrotational binary black holes in quasicircular orbits , 2001, gr-qc/0108076.
[236] Scott D. Thomas,et al. High-energy colliders as black hole factories: The End of short distance physics , 2001, hep-ph/0106219.
[237] S. Bonazzola,et al. Binary black holes in circular orbits. I. A global spacetime approach , 2001, gr-qc/0106015.
[238] C. Lousto,et al. The Lazarus project : A pragmatic approach to binary black hole , 2001, gr-qc/0104063.
[239] S. Giddings. Black hole production in TeV-scale gravity, and the future of high energy physics , 2001, hep-ph/0110127.
[240] L. Lehner. Numerical relativity: a review , 2001, gr-qc/0106072.
[241] Lawrence E. Kidder,et al. Extending the lifetime of 3D black hole computations with a new hyperbolic system of evolution equations , 2001, gr-qc/0105031.
[242] E. Seidel,et al. Black Hole Excision for Dynamic Black Holes , 2001, gr-qc/0104020.
[243] C. Will. The Confrontation between General Relativity and Experiment , 2001, Living reviews in relativity.
[244] C. Lousto,et al. Plunge waveforms from inspiralling binary black holes. , 2001, Physical review letters.
[245] Martin J. Rees,et al. ApJ, in press Preprint typeset using L ATEX style emulateapj v. 04/03/99 MASSIVE BLACK HOLES AS POPULATION III REMNANTS , 2001 .
[246] E. Seidel,et al. 3D grazing collision of two black holes. , 2000, Physical review letters.
[247] M. Alcubierre,et al. Simple excision of a black hole in 3 + 1 numerical relativity , 2000, gr-qc/0008067.
[248] Luis Lehner,et al. Numerical relativity: a review , 2001 .
[249] D. Shoemaker,et al. Grazing collisions of black holes via the excision of singularities. , 2000, Physical review letters.
[250] G. B. Cook. Initial Data for Numerical Relativity , 2000, Living reviews in relativity.
[251] A. Sintes,et al. Detection of gravitational waves from inspiraling compact binaries using non-restricted post-Newtonian approximations , 2000, gr-qc/0005058.
[252] T. Damour,et al. Determination of the last stable orbit for circular general relativistic binaries at the third post-Newtonian approximation , 2000, gr-qc/0005034.
[253] T. Baumgarte. Innermost stable circular orbit of binary black holes , 2000, gr-qc/0004050.
[254] C. Lousto,et al. LETTER TO THE EDITOR: Gravitational waves from black hole collisions via an eclectic approach , 2000, gr-qc/0003027.
[255] T. Damour,et al. Transition from inspiral to plunge in binary black hole coalescences , 2000, gr-qc/0001013.
[256] H. Rix,et al. Binary Black Hole Mergers from Planet-like Migrations , 1999, The Astrophysical journal.
[257] E. Seidel,et al. Towards an understanding of the stability properties of the 3+1 evolution equations in general relativity. , 1999, gr-qc/9908079.
[258] T. Banks,et al. A Model for High Energy Scattering in Quantum Gravity , 1999, hep-th/9906038.
[259] T. Damour,et al. Effective one-body approach to general relativistic two-body dynamics , 1998, gr-qc/9811091.
[260] Jr.,et al. Conformal ``thin sandwich'' data for the initial-value problem of general relativity , 1998, gr-qc/9810051.
[261] E. Seidel,et al. Three-dimensional simulations of distorted black holes. I: Comparison with axisymmetric results. , 1998, gr-qc/9805099.
[262] S. Shapiro,et al. On the numerical integration of Einstein's field equations , 1998, gr-qc/9810065.
[263] S. Tremaine,et al. Supermassive black holes and the evolution of galaxies , 1998, astro-ph/9810378.
[264] P. Jaranowski,et al. Third post-Newtonian higher order ADM Hamilton dynamics for two-body point-mass systems , 1998 .
[265] K. Thorne,et al. Computing the merger of black-hole binaries: The IBBH problem , 1998, gr-qc/9804057.
[266] M. Parashar,et al. Boosted Three-Dimensional Black-Hole Evolutions with Singularity Excision , 1997, gr-qc/9711078.
[267] T. Damour,et al. Improved filters for gravitational waves from inspiraling compact binaries , 1997, gr-qc/9708034.
[268] S. Hughes,et al. Measuring gravitational waves from binary black hole coalescences. I. Signal to noise for inspiral, merger, and ringdown , 1997, gr-qc/9701039.
[269] Jr.,et al. Einstein-Bianchi hyperbolic system for general relativity , 1997, gr-qc/9710041.
[270] B. Bruegmann. Binary Black Hole Mergers in 3d Numerical Relativity , 1997, gr-qc/9708035.
[271] Bernd Bruegmann,et al. A Simple Construction of Initial Data for Multiple Black Holes , 1997 .
[272] Y. Choquet-bruhat,et al. Geometrical hyperbolic systems for general relativity and gauge theories , 1996, gr-qc/9605014.
[273] C. Will,et al. Gravitational waves from binary systems in circular orbits: Does the post-Newtonian expansion converge? , 1996, gr-qc/9610058.
[274] B. Owen,et al. Search templates for gravitational waves from inspiraling binaries: Choice of template spacing. , 1995, Physical review. D, Particles and fields.
[275] Nakamura,et al. Evolution of three-dimensional gravitational waves: Harmonic slicing case. , 1995, Physical review. D, Particles and fields.
[276] T. Apostolatos,et al. Search templates for gravitational waves from precessing, inspiraling binaries. , 1995, Physical review. D, Particles and fields.
[277] Kidder,et al. Coalescing binary systems of compact objects to (post)5/2-Newtonian order. V. Spin effects. , 1995, Physical review. D, Particles and fields.
[278] Seidel,et al. Three-dimensional numerical relativity: The evolution of black holes. , 1995, Physical review. D, Particles and fields.
[279] Seidel,et al. New formalism for numerical relativity. , 1994, Physical review letters.
[280] Seidel,et al. Horizon boundary condition for black hole spacetimes. , 1994, Physical review. D, Particles and fields.
[281] John Kormendy,et al. Inward Bound—The Search for Supermassive Black Holes in Galactic Nuclei , 1995 .
[282] Seidel,et al. Numerically generated axisymmetric black hole spacetimes: Numerical methods and code tests. , 1994, Physical review. D, Particles and fields.
[283] Cook. Three-dimensional initial data for the collision of two black holes. II. Quasicircular orbits for equal-mass black holes. , 1994, Physical review. D, Particles and fields.
[284] Flanagan,et al. Gravitational waves from merging compact binaries: How accurately can one extract the binary's parameters from the inspiral waveform? , 1994, Physical review. D, Particles and fields.
[285] Seidel,et al. Collision of two black holes. , 1993, Physical review letters.
[286] David Bernstein. Physics, astronomy, and astrophysics: A numerical study of the black hole plus Brill wave spacetime , 1993 .
[287] J. Thornburg. Numerical relativity in black hole spacetimes , 1993 .
[288] Seidel,et al. Towards a singularity-proof scheme in numerical relativity. , 1992, Physical review letters.
[289] Finn,et al. Detection, measurement, and gravitational radiation. , 1992, Physical review. D, Particles and fields.
[290] Wiseman,et al. Coalescing binary systems of compact objects to (post)5/2-Newtonian order. II. Higher-order wave forms and radiation recoil. , 1992, Physical review. D, Particles and fields.
[291] Joshua R. Smith,et al. LIGO: the Laser Interferometer Gravitational-Wave Observatory , 1992, Science.
[292] Bona,et al. Hyperbolic evolution system for numerical relativity. , 1992, Physical review letters.
[293] C. Will,et al. Coalescing Binary Systems of Compact Objects to (Post)5/2‐Newtonian Order a , 1991 .
[294] M. Rees,et al. Gravitational-radiation rocket effects and galactic structure. , 1989 .
[295] Ken-ichi Oohara,et al. General Relativistic Collapse to Black Holes and Gravitational Waves from Black Holes , 1987 .
[296] V. S. Vladimirov. The Cauchy Problem , 1986 .
[297] Bernard F. Schutz,et al. A First Course in General Relativity , 2022 .
[298] E. W. Leaver,et al. An analytic representation for the quasi-normal modes of Kerr black holes , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[299] Helmut Friedrich,et al. On the hyperbolicity of Einstein's and other gauge field equations , 1985 .
[300] G. Schäfer,et al. The gravitational quadrupole radiation-reaction force and the canonical formalism of ADM , 1985 .
[301] M. Fitchett,et al. Linear momentum and gravitational waves: circular orbits around a Schwarzschild black hole , 1984 .
[302] D. Bancel. The Cauchy Problem for Einstein Equations , 1984 .
[303] M. Fitchett. The influence of gravitational wave momentum losses on the centre of mass motion of a Newtonian binary system , 1983 .
[304] M. Rees,et al. Massive black hole binaries in active galactic nuclei , 1980, Nature.
[305] J. York,et al. Time-asymmetric initial data for black holes and black-hole collisions , 1980 .
[306] W. Press,et al. Gravitational waves. , 1980, Science.
[307] J. York,et al. Kinematics and dynamics of general relativity , 1979 .
[308] Larry Smarr,et al. Kinematical conditions in the construction of spacetime , 1978 .
[309] Larry Smarr,et al. SPACE‐TIMES GENERATED BY COMPUTERS: BLACK HOLES WITH GRAVITATIONAL RADIATION * , 1977 .
[310] B. Dewitt,et al. Collision of two black holes: Theoretical framework , 1976 .
[311] J. Taylor. DISCOVERY OF A PULSAR IN A BINARY SYSTEM , 1975 .
[312] The structure of general relativity with a numerical illustration: The collision of two black holes , 1975 .
[313] The Numerical Evolution of the Collision of Two Black Holes. , 1975 .
[314] Saul A. Teukolsky,et al. Perturbations of a rotating black hole , 1974 .
[315] T. Ohta,et al. Coordinate Condition and Higher Order Gravitational Potential in Canonical Formalism , 1974 .
[316] Saul A. Teukolsky,et al. Perturbations of a rotating black hole. I. Fundamental equations for gravitational, electromagnetic, and neutrino-field perturbations , 1973 .
[317] J. Bekenstein. Gravitational-Radiation Recoil and Runaway Black Holes , 1973 .
[318] B. Dewitt,et al. Maximally slicing a black hole. , 1973 .
[319] Heinz-Otto Kreiss,et al. Methods for the approximate solution of time dependent problems , 1973 .
[320] S. Teukolsky. ROTATING BLACK HOLES: SEPARABLE WAVE EQUATIONS FOR GRAVITATIONAL AND ELECTROMAGNETIC PERTURBATIONS. , 1972 .
[321] John Archibald Wheeler,et al. Introducing the black hole , 1971 .
[322] F. Zerilli,et al. Effective potential for even parity Regge-Wheeler gravitational perturbation equations , 1970 .
[323] Albert A. Mullin,et al. Extraction of signals from noise , 1970 .
[324] Dean G. Blevins,et al. Introduction 3-1 , 1969 .
[325] H. Tananbaum,et al. Twofold increase of the high-energy X-ray flux from Cygnus XR-1. , 1968 .
[326] E. A. Womack,et al. High-energy X-rays from Cygnus XR-1. , 1967 .
[327] Roger Penrose,et al. Note on the Bondi-Metzner-Sachs Group , 1966 .
[328] P. Szekeres. THE GRAVITATIONAL COMPASS , 1965 .
[329] P. C. Peters. Gravitational Radiation and the Motion of Two Point Masses , 1964 .
[330] Charles W. Misner,et al. THE METHOD OF IMAGES IN GEOMETROSTATICS , 1963 .
[331] R. W. Lindquist,et al. INTERACTION ENERGY IN GEOMETROSTATICS , 1963 .
[332] J. Mathews,et al. Gravitational radiation from point masses in a Keplerian orbit , 1963 .
[333] Susan G. Hahn,et al. The two-body problem in geometrodynamics , 1964 .
[334] A. Peres. Classical Radiation Recoil , 1962 .
[335] Roger Penrose,et al. An Approach to Gravitational Radiation by a Method of Spin Coefficients , 1962 .
[336] John Archibald Wheeler,et al. Stability of a Schwarzschild singularity , 1957 .
[337] J. Oppenheimer,et al. On Continued Gravitational Contraction , 1939 .
[338] Albert Einstein,et al. The Particle Problem in the General Theory of Relativity , 1935 .