Black-hole binaries, gravitational waves, and numerical relativity

Understanding the predictions of general relativity for the dynamical interactions of two black holes has been a long-standing unsolved problem in theoretical physics. Black-hole mergers are monumental astrophysical events, releasing tremendous amounts of energy in the form of gravitational radiation, and are key sources for both ground- and space-based gravitational-wave detectors. The black-hole merger dynamics and the resulting gravitational wave forms can only be calculated through numerical simulations of Einstein's equations of general relativity. For many years, numerical relativists attempting to model these mergers encountered a host of problems, causing their codes to crash after just a fraction of a binary orbit could be simulated. Recently, however, a series of dramatic advances in numerical relativity has allowed stable, robust black-hole merger simulations. This remarkable progress in the rapidly maturing field of numerical relativity and the new understanding of black-hole binary dynamics that is emerging is chronicled. Important applications of these fundamental physics results to astrophysics, to gravitational-wave astronomy, and in other areas are also discussed.

[1]  Erik Schnetter,et al.  High accuracy binary black hole simulations with an extended wave zone , 2009, 0910.3803.

[2]  M Hannam,et al.  Inspiral-merger-ringdown waveforms for black-hole binaries with nonprecessing spins. , 2009, Physical review letters.

[3]  M. Miller,et al.  TEST OF A GENERAL FORMULA FOR BLACK HOLE GRAVITATIONAL WAVE KICKS , 2010, 1003.3865.

[4]  D. Shoemaker,et al.  RELATIVISTIC MERGERS OF SUPERMASSIVE BLACK HOLES AND THEIR ELECTROMAGNETIC SIGNATURES , 2009, 0912.0087.

[5]  S. McWilliams,et al.  Impact of mergers on LISA parameter estimation for nonspinning black hole binaries , 2009, 0911.1078.

[6]  S. McWilliams,et al.  MODELING FLOWS AROUND MERGING BLACK HOLE BINARIES , 2009, 0908.0023.

[7]  Yi Pan,et al.  Effective-one-body waveforms calibrated to numerical relativity simulations: coalescence of nonspinning, equal-mass black holes , 2009, 0902.0790.

[8]  Frank Herrmann,et al.  Comparisons of eccentric binary black hole simulations with post-Newtonian models , 2008, 0806.1037.

[9]  Yi Pan,et al.  Effective-one-body waveforms calibrated to numerical relativity simulations: coalescence of non-precessing, spinning, equal-mass black holes , 2009, 0912.3466.

[10]  C. Will,et al.  The gravitational-wave recoil from the ringdown phase of coalescing black hole binaries , 2009, 0910.4594.

[11]  G. Schaefer Post-Newtonian Methods: Analytic Results on the Binary Problem , 2009, 0910.2857.

[12]  O. Rinne An axisymmetric evolution code for the Einstein equations on hyperboloidal slices , 2009, 0910.0139.

[13]  Mark A. Scheel,et al.  Simulations of Binary Black Hole Mergers Using Spectral Methods , 2009, 0909.3557.

[14]  F. Pretorius,et al.  Fundamental theoretical bias in gravitational wave astrophysics and the parametrized post-Einsteinian framework , 2009, 0909.3328.

[15]  High accuracy simulations of black hole binaries: Spins anti-aligned with the orbital angular momentum , 2009, 0909.1313.

[16]  S. Husa,et al.  Bowen-York trumpet data and black-hole simulations , 2009, 0908.1063.

[17]  S. Burke-Spolaor,et al.  Timing stability of millisecond pulsars and prospects for gravitational-wave detection , 2009, 0908.0244.

[18]  David Blair,et al.  Search for gravitational waves from low mass compact binary coalescence in 186 days of LIGO's fifth science run , 2009 .

[19]  T. Bulik,et al.  Observational evidence for stellar mass binary black holes and their coalescence rate , 2009, 0907.5515.

[20]  P. Marshall,et al.  Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE QUASAR SDSS J105041.35+345631.3: BLACK HOLE RECOIL OR EXTREME DOUBLE-PEAKED EMITTER? , 2022 .

[21]  B. Szilágyi,et al.  Unambiguous determination of gravitational waveforms from binary black hole mergers. , 2009, Physical review letters.

[22]  Frans Pretorius,et al.  Cross section, final spin, and zoom-whirl behavior in high-energy black-hole collisions. , 2009, Physical review letters.

[23]  Yi Pan,et al.  Comparison of post-Newtonian templates for compact binary inspiral signals in gravitational-wave detectors , 2009, 0907.0700.

[24]  L. Blanchet Post-Newtonian Theory and the Two-Body Problem , 2009, 0907.3596.

[25]  O. Jennrich,et al.  LISA technology and instrumentation , 2009, 0906.2901.

[26]  Thibault Damour,et al.  The Effective One-Body Description of the Two-Body Problem , 2009, 0906.1769.

[27]  E. Quataert,et al.  Fossil gas and the electromagnetic precursor of supermassive binary black hole mergers , 2009, 0906.0825.

[28]  J. K. Blackburn,et al.  Search for Gravitational Waves from Low Mass Compact Binary Coalescence in 186 Days of LIGO's fifth Science Run , 2009, 0905.3710.

[29]  L. Lehner,et al.  Perturbed disks get shocked. Binary black hole merger effects on accretion disks , 2009, 0905.3390.

[30]  Vitor Cardoso,et al.  Quasinormal modes of black holes and black branes , 2009, 0905.2975.

[31]  C. Palenzuela,et al.  Binary black holes' effects on electromagnetic fields. , 2009, Physical review letters.

[32]  Y. Zlochower,et al.  Remnant masses, spins and recoils from the merger of generic black hole binaries , 2009, 0904.3541.

[33]  Z. Haiman,et al.  THE POPULATION OF VISCOSITY- AND GRAVITATIONAL WAVE-DRIVEN SUPERMASSIVE BLACK HOLE BINARIES AMONG LUMINOUS ACTIVE GALACTIC NUCLEI , 2009, 0904.1383.

[34]  Manuel Tiglio,et al.  Orbiting binary black hole evolutions with a multipatch high order finite-difference approach , 2009, 0904.0493.

[35]  M. Colpi,et al.  Massive black hole binary evolution in gas-rich mergers , 2009, 0904.0385.

[36]  Mark Trodden,et al.  Approaches to understanding cosmic acceleration , 2009, 0904.0024.

[37]  Wojciech H. Zurek,et al.  John Wheeler, relativity, and quantum information , 2009 .

[38]  S. Hughes Gravitational Waves from Merging Compact Binaries , 2009, 0903.4877.

[39]  Nicolas Gagarin,et al.  Methods for detection and characterization of signals in noisy data with the Hilbert-Huang Transform , 2009, ArXiv.

[40]  L. Ho,et al.  X-RAY PROPERTIES OF INTERMEDIATE-MASS BLACK HOLES IN ACTIVE GALAXIES. II. X-RAY-BRIGHT ACCRETION AND POSSIBLE EVIDENCE FOR SLIM DISKS , 2009, 0903.2257.

[41]  S. D. Mink,et al.  The evolution of runaway stellar collision products , 2009, 0902.1753.

[42]  Thibault Damour,et al.  Improved analytical description of inspiralling and coalescing black-hole binaries , 2009, 0902.0136.

[43]  J. Smith,et al.  The path to the enhanced and advanced LIGO gravitational-wave detectors , 2009, 0902.0381.

[44]  P. Ajith,et al.  Estimating the parameters of nonspinning binary black holes using ground-based gravitational-wave detectors: Statistical errors , 2009, 0901.4936.

[45]  B. Krishnan,et al.  Searching for numerically simulated signals from black-hole binaries with a phenomenological template family , 2009, 0901.4696.

[46]  Michael Boyle,et al.  Testing gravitational-wave searches with numerical relativity waveforms: results from the first Numerical INJection Analysis (NINJA) project , 2009, 0901.4399.

[47]  Mark Hannam,et al.  Status of black-hole-binary simulations for gravitational-wave detection , 2009, 0901.2931.

[48]  Michael Boyle,et al.  Samurai project: Verifying the consistency of black-hole-binary waveforms for gravitational-wave detection , 2009, 0901.2437.

[49]  Duncan A. Brown,et al.  Comparison of high-accuracy numerical simulations of black-hole binaries with stationary-phase post-Newtonian template waveforms for initial and advanced LIGO , 2009, 0901.1628.

[50]  B. Bruegmann,et al.  Numerical black hole initial data with low eccentricity based on post-Newtonian orbital parameters , 2009, 0901.0993.

[51]  REACTION OF ACCRETION DISKS TO ABRUPT MASS LOSS DURING BINARY BLACK HOLE MERGER , 2008, 0812.4874.

[52]  Lawrence E. Kidder,et al.  Recoil velocity at second post-Newtonian order for spinning black hole binaries , 2008, 0812.4413.

[53]  M. Miller Intermediate-mass black holes as LISA sources , 2008, 0812.3028.

[54]  José A. González,et al.  B lack-hole binary sim ulations: the m ass ratio 10:1 , 2008, 0811.3952.

[55]  S. McWilliams,et al.  LISA parameter estimation using numerical merger waveforms , 2008, 0811.0833.

[56]  A. Sesana,et al.  LISA detection of massive black hole binaries: imprint of seed populations and extreme recoils , 2008, 0810.5554.

[57]  Lawrence E. Kidder,et al.  High-accuracy waveforms for binary black hole inspiral, merger, and ringdown , 2008, 0810.1767.

[58]  A. Vecchio,et al.  Gravitational waves from resolvable massive black hole binary systems and observations with Pulsar Timing Arrays , 2008, 0809.3412.

[59]  Hiroyuki Nakano,et al.  Comparison of Numerical and Post-Newtonian Waveforms for Generic Precessing Black-Hole Binaries , 2008, 0808.0713.

[60]  Carlos O. Lousto,et al.  Modeling gravitational recoil from precessing highly spinning unequal-mass black-hole binaries , 2008, 0805.0159.

[61]  M. Colpi,et al.  Physics of relativistic objects in compact binaries: from birth to coalescence , 2009 .

[62]  Rainer Spurzem,et al.  BINARY BLACK HOLE MERGER IN GALACTIC NUCLEI: POST-NEWTONIAN SIMULATIONS , 2008, 0812.2756.

[63]  L. Rezzolla Modelling the final state from binary black-hole coalescences , 2008, 0812.2325.

[64]  Z. Frei,et al.  Identifying decaying supermassive black hole binaries from their variable electromagnetic emission , 2008, 0811.1920.

[65]  Edward K. Porter,et al.  Massive black-hole binary inspirals: results from the LISA parameter estimation taskforce , 2008, 0811.1011.

[66]  C. Mishra,et al.  LISA as a dark energy probe , 2008, 0810.5727.

[67]  R. Lang,et al.  Advanced localization of massive black hole coalescences with LISA , 2008, 0810.5125.

[68]  Masaru Shibata,et al.  High-velocity collision of two black holes , 2008, 0810.4735.

[69]  Duncan A. Brown,et al.  Model waveform accuracy standards for gravitational wave data analysis , 2008, 0809.3844.

[70]  Caltech,et al.  IMEX evolution of scalar fields on curved backgrounds , 2008, 0808.2597.

[71]  P. Marronetti,et al.  Final mass and spin of black-hole mergers , 2008, 0807.2985.

[72]  S. Babak,et al.  Resolving Super Massive Black Holes with LISA , 2008, 0806.1591.

[73]  Frans Pretorius,et al.  High-energy collision of two black holes. , 2008, Physical review letters.

[74]  G. Lovelace,et al.  Binary-black-hole initial data with nearly extremal spins , 2008, 0805.4192.

[75]  P. Ajith,et al.  Template bank for gravitational waveforms from coalescing binary black holes: Nonspinning binaries , 2008 .

[76]  Bernard J. Kelly,et al.  Mergers of non-spinning black-hole binaries: Gravitational radiation characteristics , 2008, 0805.1428.

[77]  A. Loeb,et al.  Effects of gravitational-wave recoil on the dynamics and growth of supermassive black holes , 2008, 0805.1420.

[78]  S. Komossa,et al.  A Recoiling Supermassive Black Hole in the Quasar SDSS J092712.65+294344.0? , 2008, 0804.4585.

[79]  A. Vecchio,et al.  The stochastic gravitational-wave background from massive black hole binary systems: implications for observations with Pulsar Timing Arrays , 2008, 0804.4476.

[80]  Lawrence E. Kidder,et al.  High-accuracy numerical simulation of black-hole binaries: Computation of the gravitational-wave energy flux and comparisons with post-Newtonian approximants , 2008, 0804.4184.

[81]  M. Miller,et al.  MERGERS OF STELLAR-MASS BLACK HOLES IN NUCLEAR STAR CLUSTERS , 2008, 0804.2783.

[82]  A. Perreca,et al.  Triple Michelson interferometer for a third-generation gravitational wave detector , 2008, 0804.1036.

[83]  F. Ohme,et al.  Wormholes and trumpets: Schwarzschild spacetime for the moving-puncture generation , 2008, 0804.0628.

[84]  A. Sintes,et al.  LISA parameter estimation of supermassive black holes , 2008, 0804.0492.

[85]  S. Djorgovski,et al.  The origins and the early evolution of quasars and supermassive black holes , 2008, 0803.2862.

[86]  A. Loeb,et al.  Brightening of an accretion disk due to viscous dissipation of gravitational waves during the coalescence of supermassive black holes. , 2008, Physical review letters.

[87]  T. Damour Introductory lectures on the Effective One Body formalism , 2008, 0802.4047.

[88]  J. Krolik,et al.  The Infrared Afterglow of Supermassive Black Hole Mergers , 2008, 0802.3556.

[89]  B. Iyer,et al.  The third post-Newtonian gravitational wave polarizations and associated spherical harmonic modes for inspiralling compact binaries in quasi-circular orbits , 2008, 0802.1249.

[90]  S. McWilliams,et al.  Modeling Kicks from the Merger of Generic Black Hole Binaries , 2008, 0802.0416.

[91]  M. Alcubierre,et al.  Hyperbolicity of scalar-tensor theories of gravity , 2008, 0801.2372.

[92]  Ny,et al.  Prompt Shocks in the Gas Disk around a Recoiling Supermassive Black Hole Binary , 2008, 0801.0739.

[93]  Sascha Husa,et al.  Comparison between numerical-relativity and post-Newtonian waveforms from spinning binaries: The orbital hang-up case , 2007, 0712.3787.

[94]  L. Rezzolla,et al.  PREDICTING THE DIRECTION OF THE FINAL SPIN FROM THE COALESCENCE OF TWO BLACK HOLES , 2007, 0904.2577.

[95]  T. Damour,et al.  Faithful Effective-One-Body waveforms of equal-mass coalescing black-hole binaries , 2007, 0712.3003.

[96]  M. Kesden,et al.  Spin expansion for binary black hole mergers: New predictions and future directions , 2007, 0712.2819.

[97]  Z. Haiman,et al.  Premerger Localization of Gravitational Wave Standard Sirens with LISA: Triggered Search for an Electromagnetic Counterpart , 2007, 0712.1144.

[98]  P. Ajith Gravitational-wave data analysis using binary black-hole waveforms , 2007, 0712.0343.

[99]  T. Damour,et al.  Comparing effective-one-body gravitational waveforms to accurate numerical data , 2007, 0711.2628.

[100]  Y. Zlochower,et al.  Foundations of multiple black hole evolutions , 2007, 0711.1165.

[101]  B. Bruegmann,et al.  Multipolar analysis of spinning binaries , 2007, 0711.1097.

[102]  D. Shoemaker,et al.  Robustness of binary black hole mergers in the presence of spurious radiation , 2007, 0711.0669.

[103]  M. Ansorg,et al.  Eccentric binary black-hole mergers: The transition from inspiral to plunge in general relativity , 2007, 0710.3823.

[104]  Ernst Nils Dorband,et al.  The Final Spin from the Coalescence of Aligned-Spin Black Hole Binaries , 2007, 0710.3345.

[105]  Lawrence E. Kidder,et al.  Using full information when computing modes of post-Newtonian waveforms from inspiralling compact binaries in circular orbit , 2007, 0710.0614.

[106]  Lawrence E. Kidder,et al.  Estimating the final spin of a binary black hole coalescence , 2007, 0709.3839.

[107]  P. Marronetti,et al.  High-spin binary black hole mergers , 2007, 0709.2160.

[108]  S. Nissanke,et al.  Binary-black-hole merger: symmetry and the spin expansion. , 2007, Physical review letters.

[109]  José A. González,et al.  Exploring black hole superkicks , 2007, 0707.0135.

[110]  S. McWilliams,et al.  Anatomy of the Binary Black Hole Recoil: A Multipolar Analysis , 2007, 0707.0301.

[111]  José A. González,et al.  Where post-Newtonian and numerical-relativity waveforms meet , 2007, 0706.1305.

[112]  José A. González,et al.  Reducing eccentricity in black-hole binary evolutions with initial parameters from post-Newtonian inspiral , 2007, 0706.0904.

[113]  José A. González,et al.  Reducing phase error in long numerical binary black hole evolutions with sixth-order finite differencing , 2007, 0706.0740.

[114]  J. D. Brown Puncture evolution of Schwarzschild black holes , 2007, 0705.1359.

[115]  S. McWilliams,et al.  A data-analysis driven comparison of analytic and numerical coalescing binary waveforms: nonspinning case , 2007, 0704.1964.

[116]  P. Brady,et al.  Learning about compact binary merger: The Interplay between numerical relativity and gravitational-wave astronomy , 2006, gr-qc/0612100.

[117]  José A. González,et al.  Calibration of moving puncture simulations , 2006, gr-qc/0610128.

[118]  Miguel Alcubierre,et al.  Introduction to 3+1 Numerical Relativity , 2008 .

[119]  Yale University,et al.  Powerful Flares from Recoiling Black Holes in Quasars , 2007, 0802.3873.

[120]  Frank Herrmann,et al.  Circularization and final spin in eccentric binary-black-hole inspirals , 2007, 0710.5167.

[121]  R. Lang,et al.  Localizing Coalescing Massive Black Hole Binaries with Gravitational Waves , 2007, 0710.3795.

[122]  Frans Pretorius,et al.  Binary Black Hole Coalescence , 2007, 0710.1338.

[123]  Michael Boyle,et al.  High-accuracy comparison of numerical relativity simulations with post-Newtonian expansions , 2007, 0710.0158.

[124]  Jaime S. Cardoso,et al.  Matched-filtering and parameter estimation of ringdown waveforms , 2007, 0707.1202.

[125]  B. Krishnan,et al.  Quasilocal Linear Momentum in Black-Hole Binaries , 2007, 0707.0876.

[126]  S. McWilliams,et al.  Toward faithful templates for non-spinning binary black holes using the effective-one-body approach , 2007, 0706.3732.

[127]  J. Schnittman Retaining Black Holes with Very Large Recoil Velocities , 2007, 0706.1548.

[128]  G. Shields,et al.  Recoiling Black Holes in Quasars , 2007, 0705.4263.

[129]  Matched filtering of numerical relativity templates of spinning binary black holes , 2007, 0705.3829.

[130]  P. Ajith,et al.  A phenomenological template family for black-hole coalescence waveforms , 2007, 0704.3764.

[131]  S. Phinney,et al.  Variability in Circumbinary Disks Following Massive Black Hole Mergers , 2007 .

[132]  B. Whiting,et al.  Black-hole puncture initial data with realistic gravitational wave content , 2007, 0704.0628.

[133]  P. Marronetti,et al.  Binary black hole mergers: Large kicks for generic spin orientations , 2007, gr-qc/0703075.

[134]  José A. González,et al.  Inspiral, merger, and ringdown of unequal mass black hole binaries: A multipolar analysis , 2007, gr-qc/0703053.

[135]  M. Volonteri Gravitational Recoil: Signatures on the Massive Black Hole Population , 2007, astro-ph/0703180.

[136]  E. Gourgoulhon 3+1 Formalism and Bases of Numerical Relativity , 2007, gr-qc/0703035.

[137]  Y. Zlochower,et al.  Maximum gravitational recoil. , 2007, Physical review letters.

[138]  Lawrence E. Kidder,et al.  Reducing orbital eccentricity in binary black hole simulations , 2007, gr-qc/0702106.

[139]  F. Pretorius,et al.  Black hole mergers and unstable circular orbits , 2007, gr-qc/0702084.

[140]  S. McWilliams,et al.  Modeling Kicks from the Merger of Nonprecessing Black Hole Binaries , 2007, astro-ph/0702390.

[141]  José A. González,et al.  Supermassive recoil velocities for binary black-hole mergers with antialigned spins. , 2007, Physical review letters.

[142]  R. O’Shaughnessy,et al.  Dynamical interactions and the black-hole merger rate of the Universe , 2007, astro-ph/0701887.

[143]  Y. Zlochower,et al.  Large Merger Recoils and Spin Flips from Generic Black Hole Binaries , 2007, gr-qc/0701164.

[144]  Erik Schnetter,et al.  Recoil velocities from equal-mass binary-black-hole mergers. , 2007, Physical review letters.

[145]  J. Cannizzo,et al.  Application of the Hilbert-Huang Transform to the Search for Gravitational Waves , 2007, gr-qc/0701148.

[146]  Richard A. Matzner,et al.  Gravitational Recoil from Spinning Binary Black Hole Mergers , 2007, gr-qc/0701143.

[147]  Columbia,et al.  Premerger localization of gravitational-wave standard sirens with LISA: Harmonic mode decomposition , 2007, astro-ph/0701629.

[148]  Alberto Sesana,et al.  The imprint of massive black hole formation models on the LISA data stream , 2007, astro-ph/0701556.

[149]  T. Baumgarte,et al.  Analytical representation of a black hole puncture solution , 2007, gr-qc/0701037.

[150]  Y. Zlochower,et al.  Comparisons of binary black hole merger waveforms , 2007, gr-qc/0701016.

[151]  S. McWilliams,et al.  Binary black hole late inspiral: Simulations for gravitational wave observations , 2006, gr-qc/0612117.

[152]  B. Krishnan,et al.  Spin Flips and Precession in Black-Hole-Binary Mergers , 2006, gr-qc/0612076.

[153]  S. McWilliams,et al.  Consistency of post-Newtonian waveforms with numerical relativity. , 2006, Physical review letters.

[154]  A. Goobar,et al.  Tuning Gravitationally Lensed Standard Sirens , 2006, astro-ph/0611334.

[155]  José A. González,et al.  Maximum kick from nonspinning black-hole binary inspiral. , 2006, Physical review letters.

[156]  A. Buonanno,et al.  Inspiral, merger and ring-down of equal-mass black-hole binaries , 2006, gr-qc/0610122.

[157]  Lawrence E. Kidder,et al.  Testing the accuracy and stability of spectral methods in numerical relativity , 2006, gr-qc/0609047.

[158]  S. Husa,et al.  Geometry and regularity of moving punctures. , 2006, Physical review letters.

[159]  S. Husa,et al.  Where do moving punctures go , 2006, gr-qc/0612097.

[160]  Y. Zlochower,et al.  Spin-orbit interactions in black-hole binaries , 2006, astro-ph/0608275.

[161]  R. Lang,et al.  Measuring coalescing massive binary black holes with gravitational waves: The impact of spin-induced precession , 2006, gr-qc/0608062.

[162]  Lawrence E. Kidder,et al.  Solving Einstein's equations with dual coordinate frames , 2006, gr-qc/0607056.

[163]  J. McClintock,et al.  X-Ray Properties of Black-Hole Binaries , 2006, astro-ph/0606352.

[164]  On the search of electromagnetic cosmological counterparts to coalescences of massive black hole binaries , 2006, astro-ph/0605624.

[165]  H. Pfeiffer,et al.  Circular orbits and spin in black-hole initial data , 2006, gr-qc/0605053.

[166]  M. Koppitz,et al.  How to move a black hole without excision: Gauge conditions for the numerical evolution of a moving puncture , 2006, gr-qc/0605030.

[167]  C. Gundlach,et al.  Well-posedness of formulations of the Einstein equations with dynamical lapse and shift conditions , 2006, gr-qc/0604035.

[168]  Y. Zlochower,et al.  Spinning-black-hole binaries: The orbital hang-up , 2006, gr-qc/0604012.

[169]  National Radio Astronomy Observatory,et al.  A Compact Supermassive Binary Black Hole System , 2006, astro-ph/0604042.

[170]  B. Bruegmann,et al.  Binary Black Hole Evolutions with Moving Punctures: Methods and Numerical Codes. , 2006 .

[171]  B. Iyer,et al.  Testing post-Newtonian theory with gravitational wave observations , 2006, gr-qc/0604018.

[172]  C. Misner,et al.  Excising das All: Evolving Maxwell waves beyond Scri , 2006, gr-qc/0603034.

[173]  Dae-Il Choi,et al.  Getting a Kick Out of Numerical Relativity , 2006, astro-ph/0603204.

[174]  Frans Pretorius,et al.  Simulation of binary black hole spacetimes with a harmonic evolution scheme , 2006, gr-qc/0602115.

[175]  T. Damour,et al.  Gravitational recoil during binary black hole coalescence using the effective one body approach , 2006, gr-qc/0602117.

[176]  Dae-Il Choi,et al.  Binary black hole merger dynamics and waveforms , 2006, gr-qc/0602026.

[177]  Y. Zlochower,et al.  Last orbit of binary black holes , 2006, gr-qc/0601091.

[178]  D. Holz,et al.  Short GRB and binary black hole standard sirens as a probe of dark energy , 2006, astro-ph/0601275.

[179]  D. Shoemaker,et al.  Unequal mass binary black hole plunges and gravitational recoil , 2006, gr-qc/0601026.

[180]  A. Merloni,et al.  Growing Black Holes: Accretion in a Cosmological Context: Proceedings of the MPA / ESO / MPE / USM Joint Astronomy Conference Held at Garching, Germany, 21-25 June 2004 , 2006 .

[181]  F. Rasio,et al.  Massive Black Hole Binaries from Collisional Runaways , 2005, astro-ph/0512642.

[182]  Dae-Il Choi,et al.  Gravitational-wave extraction from an inspiraling configuration of merging black holes. , 2005, Physical review letters.

[183]  Y. Zlochower,et al.  Accurate evolutions of orbiting black-hole binaries without excision. , 2005, Physical review letters.

[184]  Z. Frei,et al.  Finding the Electromagnetic Counterparts of Cosmological Standard Sirens , 2005, astro-ph/0505394.

[185]  Lawrence E. Kidder,et al.  A new generalized harmonic evolution system , 2005, gr-qc/0512093.

[186]  C. Will,et al.  Gravitational Recoil of Inspiraling Black Hole Binaries to Second Post-Newtonian Order , 2005, astro-ph/0507692.

[187]  F. Pretorius Evolution of binary black-hole spacetimes. , 2005, Physical review letters.

[188]  E. Schnetter,et al.  Black hole head-on collisions and gravitational waves with fixed mesh-refinement and dynamic singularity excision , 2005 .

[189]  H. Pfeiffer,et al.  Uniqueness and nonuniqueness in the Einstein constraints. , 2005, Physical review letters.

[190]  Daniel E. Holz,et al.  Using Gravitational-Wave Standard Sirens , 2005, astro-ph/0504616.

[191]  I. Hinder,et al.  Constraint damping in the Z4 formulation and harmonic gauge , 2005, gr-qc/0504114.

[192]  C. Lousto Understanding the fate of merging supermassive black holes , 2005 .

[193]  S. Hughes,et al.  The basics of gravitational wave theory , 2005, gr-qc/0501041.

[194]  Laura Ferrarese,et al.  Supermassive Black Holes in Galactic Nuclei: Past, Present and Future Research , 2004, astro-ph/0411247.

[195]  E. Phinney,et al.  The Afterglow of Massive Black Hole Coalescence , 2004, astro-ph/0410343.

[196]  D. Holz,et al.  How black holes get their kicks: radiation recoil in binary black hole mergers , 2004, astro-ph/0408492.

[197]  F. Pretorius Numerical relativity using a generalized harmonic decomposition , 2004, gr-qc/0407110.

[198]  A. Merloni,et al.  Preface (Growing black holes: accretion in a cosmological context) , 2005 .

[199]  C. Bona,et al.  Elements of numerical relativity , 2005 .

[200]  B. F. Whiting,et al.  A Relativist's Toolkit, The Mathematics of Black-Hole Mechanics , 2004 .

[201]  J. Camp,et al.  GRAVITATIONAL WAVE ASTRONOMY , 2004 .

[202]  H. Pfeiffer,et al.  Excision boundary conditions for black-hole initial data , 2004, gr-qc/0407078.

[203]  J. Taylor,et al.  Relativistic binary pulsar B1913+16: Thirty years of observations and analysis , 2004, astro-ph/0407149.

[204]  E. Poisson A Relativist's Toolkit: The Mathematics of Black-Hole Mechanics , 2004 .

[205]  Oscar A. Reula STRONGLY HYPERBOLIC SYSTEMS IN GENERAL RELATIVITY , 2004, gr-qc/0403007.

[206]  E. Colbert,et al.  Observational Evidence for Intermediate-Mass Black Holes in Ultra-luminous X-ray Sources , 2004, astro-ph/0402677.

[207]  Oscar A. Reula,et al.  Strongly hyperbolic second order Einstein's evolution equations , 2004, gr-qc/0402123.

[208]  D. Holz,et al.  How Black Holes Get Their Kicks: Gravitational Radiation Recoil Revisited , 2004, astro-ph/0402056.

[209]  S. Shapiro,et al.  Relativistic hydrodynamic evolutions with black hole excision , 2004, gr-qc/0401076.

[210]  B. Brügmann,et al.  Numerical simulation of orbiting black holes. , 2003, Physical review letters.

[211]  Jonathan Thornburg,et al.  A Fast Apparent‐Horizon Finder for 3‐Dimensional Cartesian Grids in Numerical Relativity , 2003, gr-qc/0306056.

[212]  C. Lousto,et al.  Coalescence remnant of spinning binary black holes , 2003, astro-ph/0305287.

[213]  S. Komossa Observational evidence for supermassive black hole binaries , 2003, astro-ph/0306439.

[214]  Moving black holes via singularity excision , 2003, gr-qc/0301111.

[215]  S. Shapiro,et al.  Numerical relativity and compact binaries , 2002, gr-qc/0211028.

[216]  P. Diener,et al.  Binary black hole initial data for numerical general relativity based on post-Newtonian data , 2002, gr-qc/0207011.

[217]  E. Seidel,et al.  Gauge conditions for long-term numerical black hole evolutions without excision , 2002, gr-qc/0206072.

[218]  E. Seidel,et al.  Three-dimensional distorted black holes , 2002, gr-qc/0206070.

[219]  B. Krishnan,et al.  Introduction to isolated horizons in numerical relativity , 2002, gr-qc/0206008.

[220]  A. Buonanno,et al.  Detection template families for gravitational waves from the final stages of binary--black-hole inspirals: Nonspinning case , 2002, gr-qc/0205122.

[221]  Lawrence E. Kidder,et al.  A Multidomain spectral method for solving elliptic equations , 2002, gr-qc/0202096.

[222]  S. Komossa,et al.  Discovery of a Binary Active Galactic Nucleus in the Ultraluminous Infrared Galaxy NGC 6240 Using Chandra , 2002, astro-ph/0212099.

[223]  The Relativistic binary pulsar B1913+16 , 2002, astro-ph/0211217.

[224]  S. Shapiro,et al.  Improved numerical stability of stationary black hole evolution calculations , 2002, gr-qc/0209066.

[225]  O. Sarbach,et al.  Hyperbolicity of the Baumgarte-Shapiro-Shibata-Nakamura system of Einstein evolution equations , 2002 .

[226]  O. Sarbach,et al.  Convergence and stability in numerical relativity , 2002, gr-qc/0207018.

[227]  O. Sarbach,et al.  Stability properties of a formulation of Einstein's equations , 2002, gr-qc/0205073.

[228]  O. Sarbach,et al.  Hyperbolicity of the BSSN system of Einstein evolution equations , 2002, gr-qc/0205064.

[229]  C. Lousto,et al.  Modeling gravitational radiation from coalescing binary black holes , 2002, astro-ph/0202469.

[230]  R.Takahashi,et al.  New conformally flat initial data for spinning black holes , 2002, gr-qc/0201062.

[231]  P. Armitage,et al.  Accretion during the Merger of Supermassive Black Holes , 2002, astro-ph/0201318.

[232]  S. Giddings,et al.  Classical black hole production in high-energy collisions , 2002, gr-qc/0201034.

[233]  Simon F. Portegies Zwart,et al.  The Runaway Growth of Intermediate-Mass Black Holes in Dense Star Clusters , 2002, astro-ph/0201055.

[234]  D. Garfinkle Harmonic coordinate method for simulating generic singularities , 2001, gr-qc/0110013.

[235]  G. B. Cook Corotating and irrotational binary black holes in quasicircular orbits , 2001, gr-qc/0108076.

[236]  Scott D. Thomas,et al.  High-energy colliders as black hole factories: The End of short distance physics , 2001, hep-ph/0106219.

[237]  S. Bonazzola,et al.  Binary black holes in circular orbits. I. A global spacetime approach , 2001, gr-qc/0106015.

[238]  C. Lousto,et al.  The Lazarus project : A pragmatic approach to binary black hole , 2001, gr-qc/0104063.

[239]  S. Giddings Black hole production in TeV-scale gravity, and the future of high energy physics , 2001, hep-ph/0110127.

[240]  L. Lehner Numerical relativity: a review , 2001, gr-qc/0106072.

[241]  Lawrence E. Kidder,et al.  Extending the lifetime of 3D black hole computations with a new hyperbolic system of evolution equations , 2001, gr-qc/0105031.

[242]  E. Seidel,et al.  Black Hole Excision for Dynamic Black Holes , 2001, gr-qc/0104020.

[243]  C. Will The Confrontation between General Relativity and Experiment , 2001, Living reviews in relativity.

[244]  C. Lousto,et al.  Plunge waveforms from inspiralling binary black holes. , 2001, Physical review letters.

[245]  Martin J. Rees,et al.  ApJ, in press Preprint typeset using L ATEX style emulateapj v. 04/03/99 MASSIVE BLACK HOLES AS POPULATION III REMNANTS , 2001 .

[246]  E. Seidel,et al.  3D grazing collision of two black holes. , 2000, Physical review letters.

[247]  M. Alcubierre,et al.  Simple excision of a black hole in 3 + 1 numerical relativity , 2000, gr-qc/0008067.

[248]  Luis Lehner,et al.  Numerical relativity: a review , 2001 .

[249]  D. Shoemaker,et al.  Grazing collisions of black holes via the excision of singularities. , 2000, Physical review letters.

[250]  G. B. Cook Initial Data for Numerical Relativity , 2000, Living reviews in relativity.

[251]  A. Sintes,et al.  Detection of gravitational waves from inspiraling compact binaries using non-restricted post-Newtonian approximations , 2000, gr-qc/0005058.

[252]  T. Damour,et al.  Determination of the last stable orbit for circular general relativistic binaries at the third post-Newtonian approximation , 2000, gr-qc/0005034.

[253]  T. Baumgarte Innermost stable circular orbit of binary black holes , 2000, gr-qc/0004050.

[254]  C. Lousto,et al.  LETTER TO THE EDITOR: Gravitational waves from black hole collisions via an eclectic approach , 2000, gr-qc/0003027.

[255]  T. Damour,et al.  Transition from inspiral to plunge in binary black hole coalescences , 2000, gr-qc/0001013.

[256]  H. Rix,et al.  Binary Black Hole Mergers from Planet-like Migrations , 1999, The Astrophysical journal.

[257]  E. Seidel,et al.  Towards an understanding of the stability properties of the 3+1 evolution equations in general relativity. , 1999, gr-qc/9908079.

[258]  T. Banks,et al.  A Model for High Energy Scattering in Quantum Gravity , 1999, hep-th/9906038.

[259]  T. Damour,et al.  Effective one-body approach to general relativistic two-body dynamics , 1998, gr-qc/9811091.

[260]  Jr.,et al.  Conformal ``thin sandwich'' data for the initial-value problem of general relativity , 1998, gr-qc/9810051.

[261]  E. Seidel,et al.  Three-dimensional simulations of distorted black holes. I: Comparison with axisymmetric results. , 1998, gr-qc/9805099.

[262]  S. Shapiro,et al.  On the numerical integration of Einstein's field equations , 1998, gr-qc/9810065.

[263]  S. Tremaine,et al.  Supermassive black holes and the evolution of galaxies , 1998, astro-ph/9810378.

[264]  P. Jaranowski,et al.  Third post-Newtonian higher order ADM Hamilton dynamics for two-body point-mass systems , 1998 .

[265]  K. Thorne,et al.  Computing the merger of black-hole binaries: The IBBH problem , 1998, gr-qc/9804057.

[266]  M. Parashar,et al.  Boosted Three-Dimensional Black-Hole Evolutions with Singularity Excision , 1997, gr-qc/9711078.

[267]  T. Damour,et al.  Improved filters for gravitational waves from inspiraling compact binaries , 1997, gr-qc/9708034.

[268]  S. Hughes,et al.  Measuring gravitational waves from binary black hole coalescences. I. Signal to noise for inspiral, merger, and ringdown , 1997, gr-qc/9701039.

[269]  Jr.,et al.  Einstein-Bianchi hyperbolic system for general relativity , 1997, gr-qc/9710041.

[270]  B. Bruegmann Binary Black Hole Mergers in 3d Numerical Relativity , 1997, gr-qc/9708035.

[271]  Bernd Bruegmann,et al.  A Simple Construction of Initial Data for Multiple Black Holes , 1997 .

[272]  Y. Choquet-bruhat,et al.  Geometrical hyperbolic systems for general relativity and gauge theories , 1996, gr-qc/9605014.

[273]  C. Will,et al.  Gravitational waves from binary systems in circular orbits: Does the post-Newtonian expansion converge? , 1996, gr-qc/9610058.

[274]  B. Owen,et al.  Search templates for gravitational waves from inspiraling binaries: Choice of template spacing. , 1995, Physical review. D, Particles and fields.

[275]  Nakamura,et al.  Evolution of three-dimensional gravitational waves: Harmonic slicing case. , 1995, Physical review. D, Particles and fields.

[276]  T. Apostolatos,et al.  Search templates for gravitational waves from precessing, inspiraling binaries. , 1995, Physical review. D, Particles and fields.

[277]  Kidder,et al.  Coalescing binary systems of compact objects to (post)5/2-Newtonian order. V. Spin effects. , 1995, Physical review. D, Particles and fields.

[278]  Seidel,et al.  Three-dimensional numerical relativity: The evolution of black holes. , 1995, Physical review. D, Particles and fields.

[279]  Seidel,et al.  New formalism for numerical relativity. , 1994, Physical review letters.

[280]  Seidel,et al.  Horizon boundary condition for black hole spacetimes. , 1994, Physical review. D, Particles and fields.

[281]  John Kormendy,et al.  Inward Bound—The Search for Supermassive Black Holes in Galactic Nuclei , 1995 .

[282]  Seidel,et al.  Numerically generated axisymmetric black hole spacetimes: Numerical methods and code tests. , 1994, Physical review. D, Particles and fields.

[283]  Cook Three-dimensional initial data for the collision of two black holes. II. Quasicircular orbits for equal-mass black holes. , 1994, Physical review. D, Particles and fields.

[284]  Flanagan,et al.  Gravitational waves from merging compact binaries: How accurately can one extract the binary's parameters from the inspiral waveform? , 1994, Physical review. D, Particles and fields.

[285]  Seidel,et al.  Collision of two black holes. , 1993, Physical review letters.

[286]  David Bernstein Physics, astronomy, and astrophysics: A numerical study of the black hole plus Brill wave spacetime , 1993 .

[287]  J. Thornburg Numerical relativity in black hole spacetimes , 1993 .

[288]  Seidel,et al.  Towards a singularity-proof scheme in numerical relativity. , 1992, Physical review letters.

[289]  Finn,et al.  Detection, measurement, and gravitational radiation. , 1992, Physical review. D, Particles and fields.

[290]  Wiseman,et al.  Coalescing binary systems of compact objects to (post)5/2-Newtonian order. II. Higher-order wave forms and radiation recoil. , 1992, Physical review. D, Particles and fields.

[291]  Joshua R. Smith,et al.  LIGO: the Laser Interferometer Gravitational-Wave Observatory , 1992, Science.

[292]  Bona,et al.  Hyperbolic evolution system for numerical relativity. , 1992, Physical review letters.

[293]  C. Will,et al.  Coalescing Binary Systems of Compact Objects to (Post)5/2‐Newtonian Order a , 1991 .

[294]  M. Rees,et al.  Gravitational-radiation rocket effects and galactic structure. , 1989 .

[295]  Ken-ichi Oohara,et al.  General Relativistic Collapse to Black Holes and Gravitational Waves from Black Holes , 1987 .

[296]  V. S. Vladimirov The Cauchy Problem , 1986 .

[297]  Bernard F. Schutz,et al.  A First Course in General Relativity , 2022 .

[298]  E. W. Leaver,et al.  An analytic representation for the quasi-normal modes of Kerr black holes , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[299]  Helmut Friedrich,et al.  On the hyperbolicity of Einstein's and other gauge field equations , 1985 .

[300]  G. Schäfer,et al.  The gravitational quadrupole radiation-reaction force and the canonical formalism of ADM , 1985 .

[301]  M. Fitchett,et al.  Linear momentum and gravitational waves: circular orbits around a Schwarzschild black hole , 1984 .

[302]  D. Bancel The Cauchy Problem for Einstein Equations , 1984 .

[303]  M. Fitchett The influence of gravitational wave momentum losses on the centre of mass motion of a Newtonian binary system , 1983 .

[304]  M. Rees,et al.  Massive black hole binaries in active galactic nuclei , 1980, Nature.

[305]  J. York,et al.  Time-asymmetric initial data for black holes and black-hole collisions , 1980 .

[306]  W. Press,et al.  Gravitational waves. , 1980, Science.

[307]  J. York,et al.  Kinematics and dynamics of general relativity , 1979 .

[308]  Larry Smarr,et al.  Kinematical conditions in the construction of spacetime , 1978 .

[309]  Larry Smarr,et al.  SPACE‐TIMES GENERATED BY COMPUTERS: BLACK HOLES WITH GRAVITATIONAL RADIATION * , 1977 .

[310]  B. Dewitt,et al.  Collision of two black holes: Theoretical framework , 1976 .

[311]  J. Taylor DISCOVERY OF A PULSAR IN A BINARY SYSTEM , 1975 .

[312]  The structure of general relativity with a numerical illustration: The collision of two black holes , 1975 .

[313]  The Numerical Evolution of the Collision of Two Black Holes. , 1975 .

[314]  Saul A. Teukolsky,et al.  Perturbations of a rotating black hole , 1974 .

[315]  T. Ohta,et al.  Coordinate Condition and Higher Order Gravitational Potential in Canonical Formalism , 1974 .

[316]  Saul A. Teukolsky,et al.  Perturbations of a rotating black hole. I. Fundamental equations for gravitational, electromagnetic, and neutrino-field perturbations , 1973 .

[317]  J. Bekenstein Gravitational-Radiation Recoil and Runaway Black Holes , 1973 .

[318]  B. Dewitt,et al.  Maximally slicing a black hole. , 1973 .

[319]  Heinz-Otto Kreiss,et al.  Methods for the approximate solution of time dependent problems , 1973 .

[320]  S. Teukolsky ROTATING BLACK HOLES: SEPARABLE WAVE EQUATIONS FOR GRAVITATIONAL AND ELECTROMAGNETIC PERTURBATIONS. , 1972 .

[321]  John Archibald Wheeler,et al.  Introducing the black hole , 1971 .

[322]  F. Zerilli,et al.  Effective potential for even parity Regge-Wheeler gravitational perturbation equations , 1970 .

[323]  Albert A. Mullin,et al.  Extraction of signals from noise , 1970 .

[324]  Dean G. Blevins,et al.  Introduction 3-1 , 1969 .

[325]  H. Tananbaum,et al.  Twofold increase of the high-energy X-ray flux from Cygnus XR-1. , 1968 .

[326]  E. A. Womack,et al.  High-energy X-rays from Cygnus XR-1. , 1967 .

[327]  Roger Penrose,et al.  Note on the Bondi-Metzner-Sachs Group , 1966 .

[328]  P. Szekeres THE GRAVITATIONAL COMPASS , 1965 .

[329]  P. C. Peters Gravitational Radiation and the Motion of Two Point Masses , 1964 .

[330]  Charles W. Misner,et al.  THE METHOD OF IMAGES IN GEOMETROSTATICS , 1963 .

[331]  R. W. Lindquist,et al.  INTERACTION ENERGY IN GEOMETROSTATICS , 1963 .

[332]  J. Mathews,et al.  Gravitational radiation from point masses in a Keplerian orbit , 1963 .

[333]  Susan G. Hahn,et al.  The two-body problem in geometrodynamics , 1964 .

[334]  A. Peres Classical Radiation Recoil , 1962 .

[335]  Roger Penrose,et al.  An Approach to Gravitational Radiation by a Method of Spin Coefficients , 1962 .

[336]  John Archibald Wheeler,et al.  Stability of a Schwarzschild singularity , 1957 .

[337]  J. Oppenheimer,et al.  On Continued Gravitational Contraction , 1939 .

[338]  Albert Einstein,et al.  The Particle Problem in the General Theory of Relativity , 1935 .